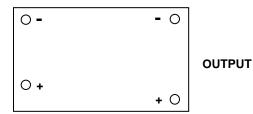


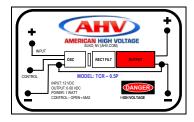
TCR Series Micro High Voltage Power Supply

General Description

The TCR is a series of regulated high voltage power supplies. They provide outputs of up 5kV and are rated at 1 Watt of power. The output voltage of the TCR may be varied either with an external resistance or control voltage. The output ripple is typically less than 1% at full power. The return output lead is internally connected to the input power return. Both positive and negative output TCR power supplies are available. They may be programmed down to zero volts output and offer 0.1% line and load regulation. All TCR's are reverse input voltage and short circuit protected.


Features

- Regulated Output
- Encapsulated
- 50 VDC to 5,000 VDC available
- 1 Watt power output
- 12 VDC input standard
- Resistance or Voltage Programming



Connection Diagram

INPUT

Bottom View

Top View

Electrical Characteristics

(at 25 degrees C unless otherwise specified)

Parameter	Conditions		Value		Units
		Min	Typical	Max	
Supply Voltage*:		10.8	12	13.2	VDC
Input Current:	No Load Full 1 Watt load	40 155	50 160	60 165	mA mA
Output Ripple:	No Load Full 1 Watt Load	0.6% 0.8%	0.7% 0.9%	1% 1.0%	Vpp Vpp
Load Regulation:	No Load to Full Load			0.01%	VNL/VL
Output Linearity	No Load		1%		Δ V ουτ Δ V ουτ (ie
Output Linearity	Full 1 Watt Load		1%		ΔVουτ ΔVουτ (Id
Short Circuit Current:				200	mA
Power Efficiency:	Full Load		60%		Роит
Reverse Input Polarity	Protected to 20 VDC				Pin
Temperature Drift:	No Load Full Load			200 200	ppm/De
Thermal Rise:	No Load (case) Full Load (case)			10 15	degrees degrees
Slew Rate (10% - 90%)	No Load Full Load			10 20	mS mS
Slew Rate (90% - 10%)	No Load Full Load			150 50	mS mS
Drain Out Time	No Load (5 τ)			150	mS

^{*} Other input voltages available: 5VDC, 15VDC, 24VDC, 28VDC and 48VDC

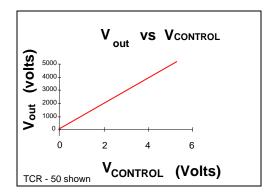
Physical Characteristics (at 25 degrees C unless otherwise specified)

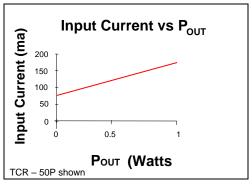
Parameter	Conditions	Value	Units
Dimensions	MKS English	25.4 W x 38.1 L x 12.7 H 1 W x 1.5 L x 0.5 H	mm inches
Volume:	MKS English	12.3 0.75	cm ³ inch ³
Mass:	MKS English	55 2	grams oz
Packaging:	Solid Epoxy Thermosetting		
Finish	Smooth Dial-Phthalate Case		
Terminations:	Gold Plated Brass pins (5)		

Environmental Characteristics

(at 25 degrees C unless otherwise specified)

Parameter	Conditions	Value	Units
Temperature Range	case temperature	-40 degrees to + 71 degrees -40 degrees to + 160 degrees	Celsius Fahrenheit
Shock:	MIL-STD-810 Method 516	40 g's	Proc IV
Altitude:	pins sealed against corona pins sealed against corona	-350 to + 16,700 -1,000 to +55,000	meters feet
Vibrations:	MIL-STD-810 Method 514	20 g's	Curve E
Thermal Shock	MIL-STD-810 Method 504	-55 deg C to + 71 deg C	Class 2


Models Available (as of July 2019): (Vin = 12 VDC)


Model	Output Voltage Range	Polarity	Power	Ripple (max
TCR -1P	0 – 100 VDC	Positive	1 Watt	1 Vpp
TCR-2P	0 – 200 VDC	Positive	1 Watt	2 Vpp
TCR-3P	0 – 300 VDC	Positive	1 Watt	3 Vpp
TCR-5P	0 – 500 VDC	Positive	1 Watt	5 Vpp
TCR-10P	0 – 1,000 VDC	Positive	1 Watt	10 Vpp
TCR-15P	0 – 1,500 VDC	Positive	1 Watt	15 Vpp
TCR-20P	0 – 2,000 VDC	Positive	1 Watt	20 Vpp
TCR-30P	0 – 3,000 VDC	Positive	1 Watt	30 Vpp
TCR-40P	0 – 4,000 VDC	Positive	1 Watt	40 Vpp
TCR-50P	0 – 5,000 VDC	Positive	1 Watt	50 Vpp
TCR-1N	0 – 100 VDC	Negative	1 Watt	1 Vpp
TCR-2N	0 – 200 VDC	Negative	1 Watt	2 Vpp
TCR-3N	0 – 300 VDC	Negative	1 Watt	3 Vpp
TCR-5N	0 – 500 VDC	Negative	1 Watt	5 Vpp
TCR-10N	0 – 1,000 VDC	Negative	1 Watt	10 Vpp
TCR-15N	0 – 1,500 VDC	Negative	1 Watt	15 Vpp
TCR-20N	0 – 2,000 VDC	Negative	1 Watt	20 Vpp
TCR-30N	0 – 3,000 VDC	Negative	1 Watt	30 Vpp
TCR-40N	0 – 4,000 VDC	Negative	1 Watt	40 Vpp
TCR-50N	0 – 5,000 VDC	Negative	1 Watt	50 Vpp

TCR Series Performance Charts

(at 25 degrees C unless otherwise specified)

TCR Series Application Notes

The TCR Series high voltage power supplies are powered by an input voltage of 12 VDC. They can be either controlled by an external resistance or an external voltage. Figure 1 below shows the basic hookup which provides the maximum regulated output voltage that the power supply is designed for. No connection is made to the voltage control pin. This voltage is fixed by the model and is a regulated output. This means, the output voltage will not vary with input line fluctuations or output load changes up to the maximum power rating for the power supply. For standard 12 VDC input models, the input line may vary from 10.8 VDC to 13.2 VDC and the output voltage will remain regulated. Standard output loads may be as high as 1 Watt of power. As shown in Figure 1 below, the simple connection of an TCR unit to a DC source of voltage will provide a high voltage stepped-up output. The input AC bypass capacitor C1 is optional and is utilized to prevent switching spikes from riding back on the input power lines. Values of 0.1 uF to 10 uF are commonly used.

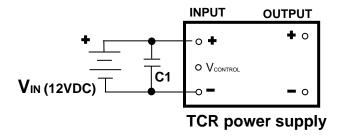


Figure 1: Basic TCR hookup schematic for maximum output (top view of TCR shown)

The output voltage of the TCR unit may be reduced in value by placing a voltage lower than the +5.0 volt reference voltage onto the Vcontrol pin. By placing a voltage of +2.5 VDC onto the control voltage pin the output will be reduced in half. Figure 2 details a simple method of using an external voltage source to vary the output voltage of the TCR power supply. Typical values of input impedance for the TCR are 5K Ohms. This makes programming via a DAC or operational amplifier an easy chore for the TCR power supply. The control voltage is referenced to the input ground. There exists an internal connection between the input ground and output ground in all TCR power supplies.

TCR Series Application Notes (continued)

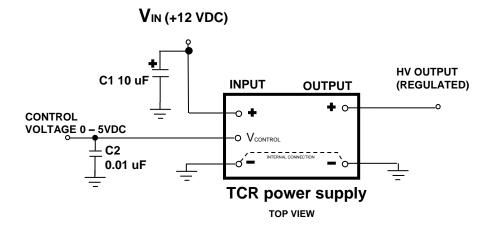
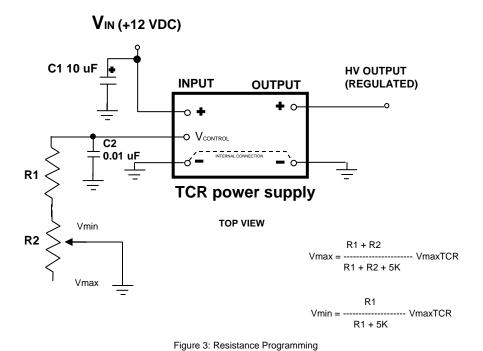
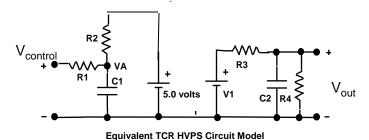



Figure 2: Voltage programming

Capacitor C1 removes switching spikes from the input line and C2 is an AC bypass to insure smooth voltage control levels.


The SCR power supply may also be programmed by using a simple trimpot and the internal +5.0 volt reference. Figure 3 shows this topology. Because the input impedance of the control voltage pin is 10K Ohms, the output of the SCR may be controlled between minimum and maximum values using the formulas given.

© 2019 American High Voltage

Equivalent TCR Circuit Model

R1 = 100 Ohms

For example, for an TCR - 50:

R2 = 5K Ohms

R3 = R3 = (0.001 x Vout max / lout max) Ohms

 $R4 = (22 \times Vout_{max}^2) Ohms$

C1 = 0.01 micro Farads

 $C2 = (0.01 \text{ x lout}_{max} / Vout_{max}) Farads$

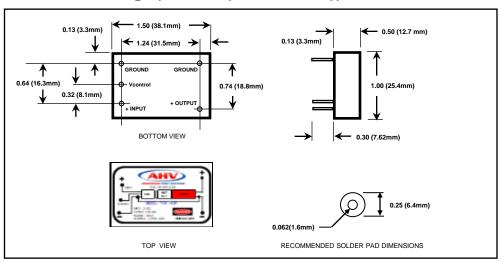
 $V1 = (VA \times Vout_{max}/5.0) Volts$

Vout**max** = 5,000 V

Poutmax = 1 W

loutmax = 0.0002 A

R1 = 100 Ohms


R2 = 5K OhmsR3 = 25K Ohms

R4 = 200 Megohm

C1 = 0.01 uF

C2 = 400 pF

Outline Drawing: (inches (millimeters))

Ordering Information:

TCR - XXY

XX = Output voltage divided by 100 Y = P for positive, N for negative

Example:

TCR - 30P: Maximum output = 3,000 V (positive) 12 VDC input TCR - 30N: Maximum output = 3,000 V (negative) 12 VDC input