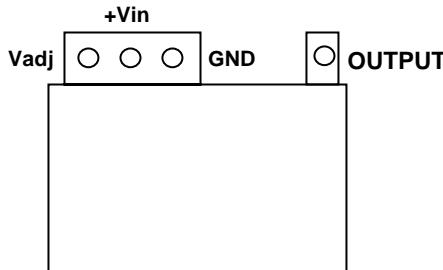


SLR Series

Precision High Voltage Power Supply

General Description


The SLR Series high voltage power supplies are extremely well regulated sources of high voltage which offer low ripple and EMI. They are ideal for PMT and other noise sensitive applications. They provide outputs of up 5kV and are rated at 10 Watts of power. The output voltage of the SLR may be varied either by the internal trimpot or by an external voltage or resistance. The return output lead is internally connected to the input power return. Both positive and negative output SLR power supplies are available. Each power supply may be programmed down to zero volts output and offer 0.001% line and load regulation. All SLR's are reverse input voltage and short circuit protected and offer a low cost alternative to other power supplies costing twice as much.

Features

- Regulated Output to 0.001%
- Low output ripple: 0.001%
- Up to 5,000 VDC available
- 10 Watt power
- 24 VDC input
- Resistance or Voltage Programming

Connection Diagram

Mounting holes on back

Available Models:

Name	Maximum Output Voltage	Maximum Output Current	1 st Year
SLR - 1P	1,000	10 mA	1998
SLR - 1.5P	1,500	7 mA	2003
SLR - 2P	2,000	5 mA	1995
SLR - 5P	5,000	2 mA	1990
SLR - 1N	1,000 (negative polarity)	10 mA	2002
SLR - 1.5N	1,500 (negative polarity)	7 mA	1993
SLR - 2N	2,000 (negative polarity)	5 mA	1978
SLR - 5N	5,000 (negative polarity)	2 mA	2005

Electrical Characteristics

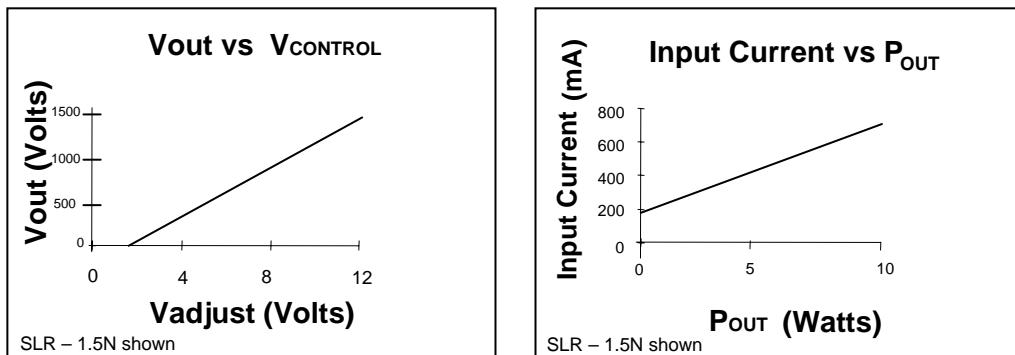
(at 25 degrees C unless otherwise specified)

Parameter	Conditions		Value		Units
		Min	Typical	Max	
Supply Voltage*:	(all power models)	21	24	27	VDC
Input Current:	No Load:	145	150	175	mA
	Full Load:	600	650	700	mA
Output Ripple:	No Load (all models):	0.0005%	0.0006%	0.0007%	Vpp
	Full Load (all models):	0.0008%	0.0008%	0.001%	Vpp
Load Regulation:	No Load to Full Load			0.001%	VNL/VL
	Half Load to Full Load			0.001%	VNL/VL
Output Linearity	No Load		0.01%		ΔV_{OUT} ----- $\Delta V_{OUT} \text{ (ideal)}$
Output Linearity	Full Load (all models):		0.01%		ΔV_{OUT} ----- $\Delta V_{OUT} \text{ (ideal)}$
Short Circuit Current:		200	300		mA
Power Efficiency:	Full Load	50%	60%	65%	P_{OUT} ----- P_{IN}
Reverse Input Polarity	Protected to 50 VDC				
Temperature Drift:	No Load			20	ppm/DegC
	Full Load			20	ppm/Deg C
Thermal Rise:	No Load (case)			15	degrees C
	Full Load (case)			25	degrees C
Slew Rate (10% - 90%)	No Load			100	mS
	Full Load			120	mS
Slew Rate (90% - 10%)	No Load			200	mS
	Full Load			100	mS
Drain Out Time	No Load (5 TC)			150	mS

* Other input voltages available: 15VDC, 24VDC, 28VDC and 48VDC

Physical Characteristics

(at 25 degrees C unless otherwise specified)


Parameter	Conditions	Value	Units
Dimensions	MKS English	127L x 44.5W x 95.3H 5.0L x 1.75W x 3.75H	mm inches
Volume:	MKS English	538.6 32.8	cm ³ inch ³
Mass:	MKS English	875 31	grams oz
Packaging:	Epoxy		
Finish	Black anodized aluminum		
Terminations: Input: Output:	Electro Plated Brass terminals Electro Plated Brass Terminal		

Environmental Characteristics

(at 25 degrees C unless otherwise specified)

Parameter	Conditions	Value	Units
Temperature Range	case temperature case temperature	-40 degrees to + 71 degrees -40 degrees to + 160 degrees	Celsius Fahrenheit
Shock:	MIL-STD-810 Method 516	40 g's	Proc IV
Altitude:	pins sealed against corona pins sealed against corona	-350 to + 16,700 -1,000 to +55,000	meters feet
Vibrations:	MIL-STD-810 Method 514	20 g's	Curve E
Thermal Shock	MIL-STD-810 Method 504	-40 deg C to + 71 deg C	Class 2

SLR Series Performance Charts

SLR Series Application Notes

The SLR Series high voltage power supplies are powered by an input voltage of 24 VDC. They can be either controlled by an external resistance or an external voltage. Figure 1 below shows the basic hookup which provides the maximum regulated output voltage that the power supply is designed for. This value may be adjusted down by utilization of the unit trimpot located at the top of the power supply. The voltage adjust pin is left floating in this condition. The maximum output voltage and polarity is fixed by the model and is a regulated output. This means, the output voltage will not vary with input line fluctuations or output load changes up to the maximum power rating for the power supply. As shown in Figure 1 below, the simple connection of an SLR unit to a DC source of voltage will provide a high voltage stepped-up output. The input AC bypass capacitor C1 is optional and is utilized to prevent switching spikes from riding back on the input power lines. Values of 0.1 μ F to 10 μ F are commonly used.

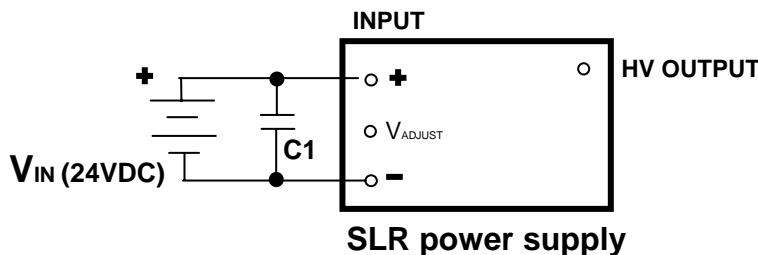


Figure 1: Basic SLR hookup schematic for maximum output

The output voltage of the SLR unit may be reduced in value by placing a voltage lower than +13.0 volts onto the voltage adjust pin. By placing a voltage of lower than +2.0 volts onto this pin, the output voltage of the power supply will be reduced to zero. Impedance of the voltage adjust pin is approximately 50 KOhms. Figure 2 details a simple method of using an external voltage source to vary the output voltage of the TCR power supply. This makes programming via a DAC or operational amplifier an easy chore for the SLR power supply. The control voltage is referenced to the input ground. There exists an internal connection between the input ground and output ground in all SLR power supplies.

SLR Series Application Notes (continued)

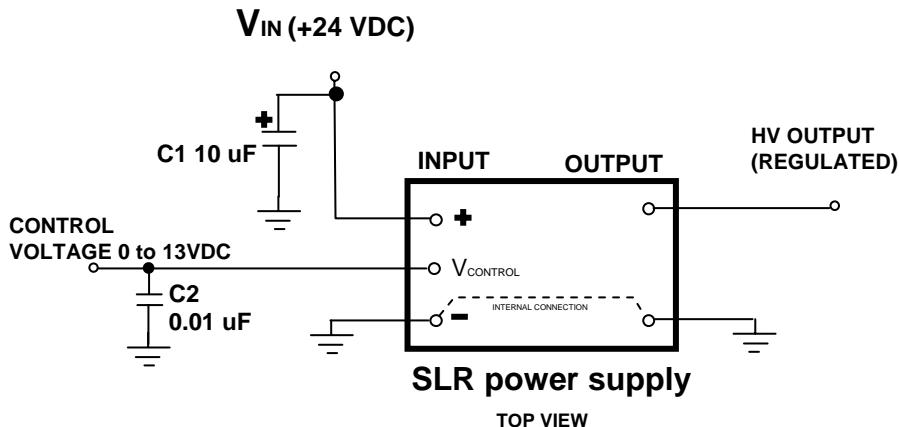


Figure 2: Voltage programming

Capacitor C1 removes switching spikes from the input line and C2 is an AC bypass to insure smooth voltage control levels.

The SLR power supply may also be programmed by using a simple trimpot. Figure 3 shows this topology. Because the input impedance of the control voltage pin is 50K Ohms, the output of the SLR may be controlled between minimum and maximum values using the formulas given.

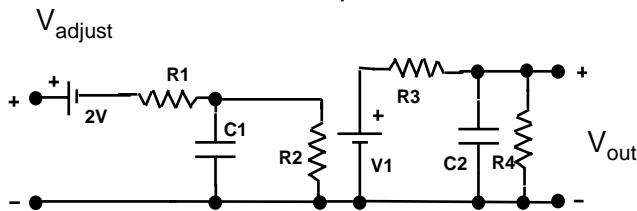
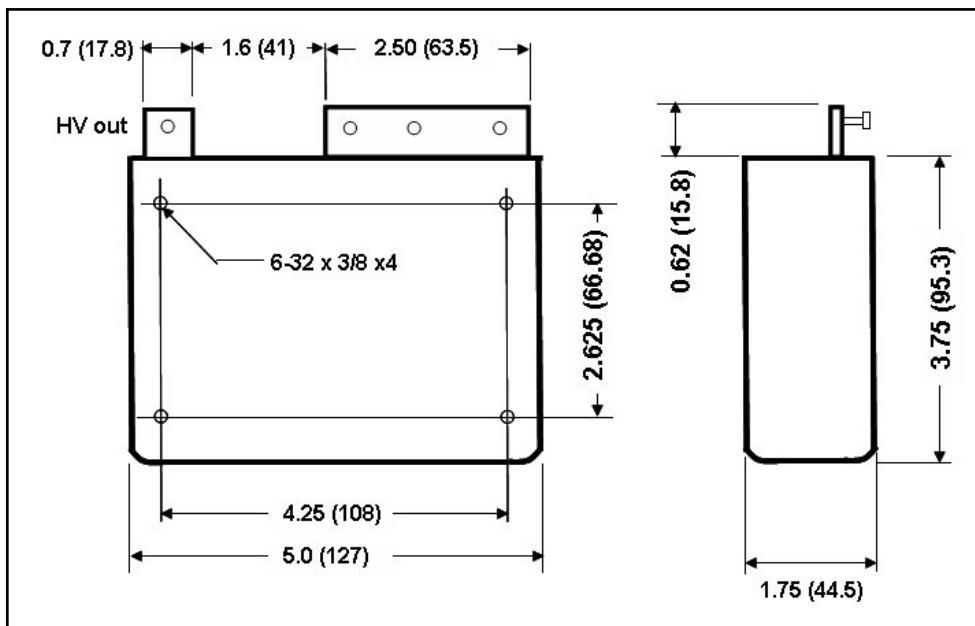



Figure 3: Resistance Programming

Equivalent SLR Circuit Model



Equivalent SLR-XP High Voltage Power Supply Circuit Model

$R1 = (100) \text{ Ohms}$
 $R2 = (50 \text{ K}) \text{ Ohms}$
 $R3 = (0.002 \times V_{out_{max}}) \text{ Ohms}$
 $R4 = (10 \times V_{out_{max}}^2) \text{ Ohms}$
 $C1 = (0.01 \times 10^{-6}) \text{ Farads}$
 $C2 = (0.04 \times I_{out_{max}} / V_{out_{max}}) \text{ Farads}$
 $V1 = (V_{R2} \times V_{out_{max}} / 11.0) \text{ Volts}$

For SLR-2P: $V_{out \ max} = 2,000 \text{ V}$
 $I_{out \ max} = 0.005 \text{ A}$
 $P_{out \ max} = 10 \text{ W}$
 $R1 = 100 \text{ Ohms}$
 $R2 = 50 \text{ K Ohms}$
 $R3 = 4 \text{ Ohms}$
 $R4 = 40 \text{ Megohms}$
 $C2 = 0.1 \mu\text{F}$

Outline Drawing: (inches (millimeters))

Ordering Information:

SLR – XXY

Example:

SLR – 2P: Maximum output = 2,000 V positive polarity
 SLR – 1.5N: Maximum output = 1,500 V negative polarity

XX = Output voltage: 1 = 1 kV
 Y = Polarity 1.5 = 1.5 kV
 2 = 2 kV
 5 = 5 kV