
 

Chapter 7: Inductors for High Voltage Power Supplies 
 

As we have said in the previous chapter, magnetic components are very important in the field of 

power conversion.  Because this book deals with high voltage power supplies, we will start with 

the basic inductor and present its key features.  In this chapter we will learn how to design 

inductors within the constraints of permeability shifts, DC and AC working currents, material 

saturation, and temperature rise.  This will pave the way for more complicated devices in the 

chapters ahead such as the high voltage transformer (Chapter 8) and driver circuits (Chapters 

9+).   

 

Inductors are usually found in high voltage power supplies.  From the 60Hz variac/transformer  

step-up types that use lamination chokes to smooth out the ripple to high frequency resonant 

converters that tout low stored energy within their topology, the following are the usual locations 

detail where inductors are found.  We will cover them in order. 

  

   1. Tuned Circuits  (air core) 

   2. Ringing Choke Converters 

   3. Input line chokes 

   4. Output filter chokes 

   5. Resonant power chokes  

 

But first a review of the equations that represent the inductor: 

 

Basic Inductor: 

The basic inductor equation from elementary circuit theory relates the voltage across an inductor 

to the change in current flowing through it is: 

 

     V(t) = L di(t)/dt    (7-1) 

 

Conversely, the integral of the voltage function will yield the current: 

 

     i(t) = 1/L ∫ v(t) dt    (7-2) 

 

When only a DC current flows through an inductor the voltage across it is from Ohmic losses 

only and these are due to the resistance of the copper wire and terminations.   But when there is 

an AC steady state current flowing through the inductor, the following equation, really an AC 

form of Ohm’s Law, comes in handy: 

 

     VL = IL Z     (7-3)  



which states that the steady state AC voltage across an inductor depends upon the AC steady 

state current flowing through, IL, it multiplied by the impedance of the inductor Z.  If the units of 

IL are Amperes RMS, the units of the voltage, VL, will be volts RMS as well.  Of course, the units 

of the impedance Z are Ohms.   But Z is frequency sensitive.  In phasor notation the impedance 

of an inductor is given by: 

  

    Z = jωL = j2πfL    (7-4) 

 

with the operator j, indicating a 90° phase shift in time between the voltage and current, with the 

voltage leading the current as remembered by the mnemonic: Eli the ice man. As you can see, for 

any inductor, the higher the frequency the higher the impedance.  Phasor notation, brought to 

general use by Heaviside and Steinmetz in the 1900’s, makes analyzing AC circuits easier 

because it converts lengthy differential equations into easier algebraic ones.  Laplace Transforms 

do the same but are a little more complicated because they offer the transient solutions as well.     

 

As you probably know, the basic definition of inductance is given as the first derivative of the 

magnetic flux with respect to current.   That is: 

 

    L = d φ  / di     (7-5) 

 

The units of inductance are the Henry named after the American electrical scientist of the 1800’s. 

Most inductors fall into the range of 1 μH up to 10H covering seven orders of magnitude.  Even 

a straight piece of wire has an inductance of about 1.5 μH/meter.     

 

An inductor can store energy in the magnetic field it based on the instantaneous value of current: 

 

    Energy  = ½ Li 
2     

(7-6) 

 

When the current is in Amperes, inductance in Henrys, the energy is computed in Joules.   

 

 

 

 

 

 

 

 

 

         Figure 7.1:  Basic Inductors (Miguel) 

 



Calculation of Inductance of an Air-Core Solenoid 

There are many configurations that one can utilize to wind an inductor and several are listed 

here.  Unfortunately, calculating the inductance of a winding is not as easy as one might expect.  

Although we developed equations in Chapter 5 that gave us the B field as a function of current 

and position within a solenoid of length L of radius R, it did so at locations only along the 

central axis at a distance from the center of the solenoid z: 

 

 

  (7-7) 

   

   

      

 

 

 

 

 

 

 

 

 

 

    Figure 7.2:  Long solenoid inductor 

 

No mention was made of the B field off the central axis, say closer to the coil edge where it 

stands to reason that the B field would be obviously different.  Nevertheless, we refined the 

above equation to consider the spot where z = 0, at the exact center of the coil.  This yielded a B 

field:  

 

    B =  0.5 μo  N i / SQRT (R
2
 +   2/4)    (7-8) 

 

The flux can be found by making the assumption that the B field is constant at this value from 

the central axis to the wire coil, that is, across the surface area of the circle or coil diameter.  It’s 

a poor postulation but seems to work.  The flux can be found by remembering: 

 

   Φ =  ∫ B ∙ dA      (7-9) 

 

and simply multiplying by the coil crossectional area we get the magnetic flux: 

 

   Φ =   0.5 μo  N i πR
2
/ SQRT (R

2
 +   2 

/4)   (7-10) 



This allows us to get the inductance for an air-core solenoid: 

 

 L = NdΦ /di = 0.5 μo  N
2
πR

2
/ SQRT (R

2
 +    2/4)  (7-11) 

 

Let’s try an example: 

 

 Example 1: 

 Calculate the inductance of a single layer air-core solenoid wound on a paper towel tube 

 of diameter 1.75 inches and a winding length of 3.5 inches.   The solenoid is wound with 

 108 turns of #35 AWG red magnet wire.  This inductor will be used in conjunction with 

 a 365 pF variable capacitor, as part of a tuning circuit of a young person’s crystal radio 

 project.  The turns are wound snug next to each other. 

 

 Solution: 

 Converting our units to MKS: 

 

    = 3.5 inches (0.08890 meters) 

  D = 1.75 inch (0.04445 meters) 

  N = 108 

  

 therefore the radius of the coil form R is: 

 

  R = 0.875 inches (0.02225 meters) 

 

 Using our derived equation we can easily plug in the numbers: 

   

  L = 0.5 μo  N
2
πR

2
/ SQRT (R

2
 +   2/4) 

    L = (0.5)(4πE-7)(108)
2
π(0.02225)

2
 / SQRT((0.02225)

2
 + (0.0889)

2
/4) 

  L = 2.943E-6 / 0.04971 

  L = 229.3 μH 

  

 This inductance when utilized with the tuning capacitor mentioned will allow the range 

 from 550 kHz to 1.65 MHz be received.   But that equation is rather complicated.  What 

 about our shortened form for B field we generated in Chapter 5, what will that give?   

 Using this “short” B field equation we get (using meters as our length): 

 

  B = μo  N  I  /    

  Φ = μo  N I A/   

  L = N dΦ /di = μoN 
2
A/  = μoN

2
πR

2
/   (7-12) 

  L = 256.4 μH 



Close, but which one is correct?  That is a good question.  There are a multitude of inductor 

equations that have been developed since 1900.  Here are three of the literally twenty equations 

one can find online dealing with the inductance of a single layer solenoid coil.    

 

Wheelers equation: L = N
2
R

2 
/ (9R + 10 )  uses inches gives μH    (7-13) 

   L=208.3 μH 

 

Esnault-Pelterie: L   =  0.1008 (R
2
N

2
)/(  + 0.92R)  uses inches gives μH  (7-14) 

   L   =  218.4 μH 

 

ARRL handbook L = D
2
N

2
/(18D+40 ) in inches gives μH    (7-15) 

   L = 208.3 μH 

 

The ARRL handbook equation gives the same inductance as the Wheeler formula because it is 

really the same equation just corrected for a diameter.  But, if you get tired of calculating the 

inductance there are also automatic air-core inductance calculators online and this is what they 

yield when our data is inserted: 

 

 www.allaboutcircuits.com/tools/coil-inductance-calculator   L   = 265 μH 

 

 www.66pacific.com/calculators/coil-inductance-calculator.aspx L   = 216 uH 

 

 www.translatorscafe.com/unit-converter/en-US/calculator/coil-

 inductance/?D=2&Du=cm&l=1&lu=cm&N=10   L   = 222 μH 

 

 https://hamwaves.com/inductance/en/index.html#input  L   = 219 μH 

 

As you can see there is no consensus on what the exact inductance would be in this situation 

even with online “calculator” sites.   They all yield different values although they are reasonably 

close enough for the beginners project of a crystal radio.  If you are going to need an exact 

inductance value the old method of “cut and try” cannot be underestimated.   

  

Air core inductors made with a single layer coil has two advantages. Firstly, like all air core 

coils, it is free from 'iron losses' and the non-linearity of permeability found in a BH curve. 

Secondly, single layer coils have the additional advantage of low self-capacitance and thus high 

self-resonant frequency. These coils are mostly used for RF work.  You will find that many first 

crystal radios that are built utilize inductors wound on paper towel tubes.  

 

 

 



 

 

 

 

 

 

 

 

 

 

 

    Figure 7.3:  Air-core paper-towel tube solenoid 

 

Because they come up so frequently, we will list the inductance of a toroid shape: 

 

    L = (μo h N 
2
 (ln (b/a)) / 2 π)   (7-16) 

 

where h is the thickness of the toroid and b and a the outer and inner diameters.   Like the linear 

air-core solenoid, the toroid has many online equations.  Here is one that forgoes the natural log 

function:   

 

   L = 0.01257N
2
(R – SQRT(R

2
-r

2
))    (7-17) 

 

where R is the average radius of the core and “r” the radius of the toroid cross-section circular 

shape – that is - the radius of the turn made by the wire so to speak.   This gives the inductance in 

uH if the dimensions listed are in cm.   

 

 

 

 

 

 

 

 

 

 

 

    Figure 7.4:  Toroidal Inductor 

 

 



Permeability 

In Chapter 6 we examined the increase in magnetic field when a ferromagnetic material is 

inserted within the windings of an air-coil inductor. Consider an air-core solenoid where the 

inductance is given by the following (we will use the short version) equation: 

 

  L = μo N
2
 A /   (short form air core inductor R<< L)   (7-18) 

 

Upon inserting a ferromagnetic material we will find that the inductance has now increased 

sometimes by a substantial amount. Multiplying by the relative permeability of the material gives 

us the increased inductance of the solenoid wound on a magnetic material: 

    

  L = μr μo N
2
 A /             (7-19) 

 

We call μr the relative permeability of the material, a number that can run from 1.0 to 100,000.  

Obviously this is the easy way of looking at the situation.  Exact solutions require one to 

consider the actual placement of the material position inside the solenoid, the size of the core, the 

magnetic path length, etc.  Placing a BB sized piece of ferrite inside our much larger air-core 

solenoid of Example 1 will not increase the inductance by very much and all of these parameters 

have to be taken into consideration.  As mentioned in Chapter 6, the relative permeability μr, can 

be obtained from the B-H curve of the material.  Figure 7.5 shows the following relationship 

between μr and the slope: 

 

     μr   = (1/μo) dB/dH     (7-20) 
 

Notice that the relative permeability is very sensitive to the H field setup within the material.  As 

the H field excitation of the inductor starts out small, say for signal magnitudes, the permeability 

of the material begins at a low value called the initial permeability, μi.  As the H field increases 

a maximum point is reached, μm.  Past this maximum we have a decreasing relative permeability 

that eventually winds up heading towards unity when saturation is reached.   

 

 

 

 

 

 

 

     

 

    Figure 7.5:  Permeability vs H field 



When designing inductors you will see many different permeability terms bandied about 

prompting the question: which one should we use to calculate inductance? The best answer 

always is to use what is found in a vendor’s catalog.  They are the ones making the material so 

they should be on top of the numbers for their products.  One parameter that usually comes up 

often is the AL value for the particular core you have selected.  Although not a permeability 

number, the AL gives the inductance for a certain listed number of turns, usually just one turn.  

This allows easy calculation of inductance.  Usually listed as nano-Henry per turn squared, you 

can find AL values listed in Figure 7-6 for the Ferroxcube 1811 pot core (2013 catalog).     

 

 

 

 

 

 

 

       

   Figure 7.6:  Information about an 1811 pot core (Ferroxcube)   



The next important figure describes the material, in this case 3C81, a ferrite normally used to 

make power transformers and inductors.   On this datasheet there are charts that show how the 

material behaves over temperature and driving conditions.  Notice for example in Figure 7-7 (Fig 

2) how the permeability drops off suddenly to zero at the Curie Point of the material of 230 

°Celsius.  All magnetic materials have data sheets that tell their properties.       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Figure 7.7:  Material 3C81 data sheet 



A word of caution.  Make sure you know exactly the units being used for the AL calculation.  For 

example, sometimes a vendor will publish the AL values for a particular core.  This gives the 

inductance value as a function of the number of turns.  Old Ferroxcube catalogs from the 1970’s 

would specify AL in mH/1000 turns.  Newer ones list nH/turn-squared.  When you work it out, 

they give the same value, that is 45 nH/T
2  

= 45 mH/1000 turns.   

 

 Example 2: 

 A pot core inductor of size 1811 is made from 3D3 material without a gap.  The AL value 

 of this is seen to be 1400 nH/turn
2
.  How many turns are required to make a 1.0 mH 

 inductor? 

 

 Solution: 

 The AL equation works with the square of the turns:  

  

    L = ALN
2 
      (7-21) 

 

 where AL = 1400E-9 Henry/turn
2 

(from the datasheet).  For a 0.001 Henry choke to be 

 made we solve the equation: 

 

   N = SQRT (L/AL) 

   N = SQRT (0.001 / 1400E-9) 

   N = 26.7 turns (round up to 27 turns)   

 

Ferrite core analysis: 

Many DC to DC converters utilize ferrite cores for their power conversion topology.  There are 

many reasons to do so, among the better ones is that over the last twenty years ferrites have been 

designed to operate at frequencies much greater than 1Mhz – something tape wound Permalloy 

or powdered iron cores simply cannot do.  In addition, some ferrite cores such as pot cores or 

RM types can be assembled with bobbins wound with many turns of fine wire and easily put 

together.  This is not the case with a toroidal core which has to be wound on a special machine.  

This is especially concerning for high voltage step-up converters which sometimes rely on 

thousands of turns to make a transformer secondary winding.  It is very hard to wind a toroid 

with a thousand turns carefully insulated from each other.  As a rule, most high voltage 

transformers are made using ferrites that are not toroids.        

  

In addition, a ferrite core made from two pieces can have its inductance adjusted to a certain 

value by placing an insulating gap between the two core halves.  This cannot be done with a 

toroid core.  We will take a closer look at this ability now because we will use it when we design 

inductors for ringing choke power supplies.   

 



 

Effective Permeability 

Here is the detailed listing for an 1811 pot-core set from the Ferroxcube catalog.  Looking at the 

AL value for a core made of 3C81 material shows a value of 4000 nH/T
2
 for an inductor made 

without a gap.  They also show an “effective permeability” of 1900.  This seems odd considering 

the 3C81 material has an initial permeability of 2700 as given in its materials property sheet of 

Figure 7-7. 

  Figure 7.8:  AL values for 1811 core 3C81 material  

 

The answer to this confusing observation is that Ferroxcube insures the inductor you calculate 

using the ungapped AL listing will have the same value if you calculate it using the inductance 

equation for a solenoid providing you utilize this “effective permeability” shown here as 1900.  

Somewhere over the years at Ferroxcube a technician made a direct measurement made on an 

1811 core with a bobbin containing a certain number of turns and these values of AL were 

recorded for the catalog. By posting the effective permeability, they have taken the guesswork 

out of what permeability to use.  We will use this number when gapping cores later on.   

 

As proof that the “short” equation works for ungapped cores consider an ungapped 1811 core 

(P18/11-3C81) wound with 100 turns.  The AL value for the 3C81 material indicates we will 

have an inductance of: 

 

   L = AL T
2
 

   L = (4000E-9)(100)
2
 

   L = 0.04 Henry 

 

Now, consider the “short” inductance equation for a solenoid using the “effective permeability”:   

   

   L = μr μo N
2
 Ae /  e    

   L = (1900)(4πE-7)(100
2
)(0.433E-4)/(0.0258) 

   L = 0.04 Henry 

 



where the core area and magnetic path length, obtained from the catalog, have been inserted, all 

in meters.  From this expression we get the same value providing we use this number listed. 

   

Gapping 

One of the beauties of using cores with two halves is that you can insert a gap when needed to 

adjust the inductance, prevent DC saturation or store more energy when needed.   An air gap not 

only lowers the “effective permeability” of the system but increases the effective magnetic path 

length as well.  Air gaps have other purposes too - such as reducing the percentage drift in 

inductance over temperature.   

 

Many ferrite cores can be purchased with their center leg already gapped (shorter).  While this 

may sound good for large production runs, and the shielding does prevent the magnetic field 

from radiating, it is probably not a good idea practical reasons.  First of all, doing so would 

require you to stock a ferrite by its gap.  What will happen if you need to change the inductance 

because of a modification down the line?  It’s hard to add a gap to an already gapped ferrite.  The 

second problem with a gapped ferrite where the center leg is shaved down is susceptible to 

cracking when tightening the center mounting screw.  Avoid pre-gapped cores because, as times 

go on, they may also be hard to procure.       

 

 Example 3: 

 Using the Ferroxcube datasheet for the 1811 pot core, determine the effective gapped 

 permeability for a core set that has a total gap of 500 μm (0.02 inches) made with 3C81 

 material. This is accomplished by placing a gaping material of 10 mils thickness between 

 the pot core halves. In addition, determine the inductance of a core wound with 100 turns 

 having  this gap.  

 

 Solution: 

 The gap length of 500 μm is not included on the Ferroxcube catalog page (Figure 7.8).  

 The closest value to the one we need is 400 μm. Using EXCEL and TRENDLINE 

 analysis we can plot the gapped effective permeability μe and AL value for a 

 continuous range of gaps taken from their catalog.  This is shown in Figure 7.9.  The 

 position of 500μm is shown by the dotted red line.  Here an AL value can be calculated as 

 133.5  nH/T
2
 . From this we can determine the inductance of a core set having that gap 

 and the 100 turns.  Remember, the values for the gap in the core represent the total gap 

 length.  Because for pot cores only the center leg is gapped (cut short), the gap value 

 represents how much shorter the central leg is.     

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 7.9:   Effective Gap Permeability  and AL as a function of gap using data points  

   from the catalog 

 

The AL values as a function of gapping show the following TRENDLINE: 

 

   AL = 26447 gap -0.851
       

 

The gapped effective permeability show this TRENDLINE: 

 

   μe gapped = 12883  gap -0.856
     

 

where  gap  is in micrometers.  Because we need the values at  gap = 500 μm, inserting the 

value of 500 into both equations yields: 

 

  AL = 133.5 nH/T
2
   at a 500 μm gap 

  μe gapped  = 63    at a 500 μm gap 

 

The inductance for this core with 100 turns would be:  

 

  L = ALN
2
 

  L = (133.5E-9)(100)
2
 

  L = 0.00134 Henrys 

 



If we used the “short” inductance equation with this value of effective gapped permeability we 

should get the same value of inductance: 

 

   L = μe gapped μo N
2
 Ae /  e      (7-22) 

   L = (63)(4πE-7)(100
2
)(0.433E-4)/(0.0258) 

   L = 0.00133 Henrys 

 

where both Ae and  e are the 1811 core area and magnetic path length, both values are 

taken from the catalog (in meters).  You can see that knowing the “effective” gapped 

permeability μe gapped sometimes is useful.  Plotting the parameters taken from actual core samples 

as listed in the catalog is the best way to obtain values for gaps not listed.   But what if the 

catalog doesn’t show values for gapped cores? 

 

Gapped Core Equation 

We will derive a formula that gives us the inductance for a set of cores that can be separated 

using a gap by using energy relationships.  You can use this if you cannot obtain information on 

gapped cores as we did in example 3.  This is called the “universal gapping equation” and can be 

used anywhere a core is to have a gap placed in it, working for both metglass cores, laminations 

and ferrites.  To make it easier we will start off with an inductor composed of two halves with a 

small gap inserted in between and driven by a sinewave.  The length  e is the magnetic 

material length as purchased and  gap is the total gap you are adding.  Ae is the cross-

sectional area of the core.      

 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

   Figure 7.10:  Ferrite core of physical length  e with gap  g   



Starting off with the inductor equation: 

 

  i(t)   =     1/L ∫ v(t) dt = 1/L ∫ Vp sin 2πft dt    

 

we can easily determine the current waveform.  It will be sinusoidal as well:   

 

  i(t) = - (Vp/2πfL) cos 2πft  + C     (7-23) 

 

where, because the DC level is zero, C = 0.   

 

 

 Figure 7.11:  Voltage and resultant current waveforms (electronics-notes.com)  

 

The power going into the circuit is simply the product of voltage and current, it is not zero 

because there are times when both voltage and current overlap with finite values: 

 

  P(t) = - (Vp
2
 / 2πfL) sin 2πft cos 2πft      (7-24) 

 

and the energy is just the integral of the power: 

 

 Energy (t) =  ∫ P(t) dt = - (Vp
2
 / 2πfL)   ∫ sin 2πft cos 2πft  dt (7-25) 

 



because     ∫ sin ax cos ax  dx = (1/2a) sin 
2 

ax    (7-26) 

 

we find the maximum energy into the system due to the electrical excitation as: 

 

   Energymaximum  = Vp
2
 / 8π

2
f 

2
L    (7-27) 

     

and this energy from the generator will manifest itself as magnetic field energy.   

 

As we learned from the chapter on magnetism, Chapter 4,  the energy of a magnetic field per unit 

volume depends upon the square of the B field: 

 

   Energy  = ½ B
2
 / μ0      (7-28) 

 

These energy relationships have to be equal because the electrical voltage from the source is 

driving the inductance and using current causing the magnetic field to exist.  Current flows into 

the coil as the magnetic field grows.  When the voltage starts dropping, the magnetic field energy 

flows out of the winding back to the generator voltage source in a lossless cycle.   

 

By traveling around the magnetic path and summing up the volumes where the magnetic field 

exists in both the magnetic material and the air-space gap, we can determine the inductance of 

the gapped core, taking into consideration several factors: 

 

 1. The B field magnitude in a closed loop is constant in value.  This is in the   

  magnetic material as well as the air-gap, both regions have the same B value.    

 2. If a gap is added to a core system, the volume added is:  Ae  gap       

 3. Equation 7-28 must include the relative permeability when necessary. 

 

Which, when incorporated yields the following energy summation over the full volume: 

 

  Energy  = ½ B
2
 Ae  e  / μr μ0  + ½ B

2
 Ae  gap  / μ0   (7-29)  

 

where Ae is the crossectional area of the core and  e the magnetic path length of the core.  

summing up we have: 

 

  Energy  = ½ B
2
 Ae (1/ μ0) ( e / μr  +  gap)   (7-30) 

 

If we can relate the continuous B field to the voltage impressed on the coil of the inductor we 

could determine the inductance of the gapped inductor.   

 



Faraday’s Law teaches us that the time derivative of the magnetic flux is proportional to the 

voltage of an inductor: 

 

   v(t) = N dΦ / dt       

 

and we know the magnetic flux over an area of constant B field is just” 

 

   Φ = ∫ B ∙ dA 

       

yielding:  v(t) = NAe dB / dt       

 

Becaue Ae is the area that the B field flows through.  Because we defined the driving voltage as: 

     

   v(t) = Vp sin 2πft  

 

we can easily find the B field maximum as a function of time: 

 

  B(t) = (1/NAe) ∫ v(t)dt = (1/NAe) ∫ Vp sin 2πft dt  (7-31) 

 

giving us:    

 

  Bmax = Vp /NAe2π f       (7-32) 

 

Inserting this into equation (7-30) we find the magnetic energy as: 

 

 Energy max = ½ (Vp /NAe2πf) 
2
  Ae (1/ μ0) (  e / μr  +  gap)  (7-33) 

 

but this is equal to the energy term we derived for the applied electrical energy, equation 

(7-27), with the result that the inductance of the gapped core can now be found: 

 

  Lgapped = N 2Ae μ0 μr /  e (1 + μr  gap /  e )    (7-34) 

 

Notice that the inductance is just the inductance of the un-gapped core divided by the factor 

involving the core length and gap length and relative permeability of the core: 

 

  Lgapped = Lungapped core  /  (1 + μr  gap /  e )    (7-35) 

 

 

 

 



Let’s test this out. 

 

 Example 4: 

 Using the fact that an ungapped 1811 3C81 ferrite core of 100 turns has an inductance 

 (according to the AL of the catalog of 4,000 nH/T
2
) of  0.04 H, determine the inductance 

 of a core with the same number of turns gapped with a total gap of 500 μm (0.02 inches).    

 

 Solution: 

 Obtaining the ferrite length, and effective permeability we can insert this information into 

 equation 7-38: 

 

  Lgapped = Lungapped core  /  (1 + μr  gap /  e )    

 

  Lgapped = 0.04  /  (1 + (1900)(5E-4)/(25.8E-3)) 

 
  Lgapped = 0.04  /  37.82  Henries 

 

  Lgapped = 1 mH 

 

somewhat smaller than the result we came up with in Example 3 earlier (0.00134).  Why is this 

inductance calculated with our “universal gapping equation” smaller than that found by 

experiment?  

 

Coming up short 

In the literature on magnetic devices you will often see this “universal gapping equation”.  It 

shows a shortcut way to calculate the effective permeability or inductance value as a function of 

gap length  g and magnetic path length  e using the ungapped relative permeability μr, and is a 

consequence of our derived equation (7-35):  

 

    μe gapped  = μr / (1 +  μr  g /  e))     

 

In McLyman’s comprehensive book Transformer and Inductor Design Handbook (1988) this 

permeability gapping equation comes up many times.  Let’s look at an example.         

 

 Example 5: 

 Using the Ferroxcube datasheet for the 1811 pot core and the “gapping equation”, 

 determine the effective gapped permeability μe gapped  for a core set that has a total gap of 

 500 μm (0.02 inches) made with 3C81 material.   We did this using EXCEL in Example 

 3 and found a value of 63.  

 



 Solution: 

 As noted earlier, the gap length of 500 μm is not included in the list of manufactured 

 parts by Ferroxcube in Figure 7-8.  Using the above equation we get (using meters): 

 

   μe gapped   =  1900  / (1 +  (1900)(500E-6) / (0.0258))  

     μe gapped   =  1900  / (37.8)  

    μe gapped   =  50.2  

 

You can immediately see the problem. We proved earlier from EXCEL plotted catalog data 

(taken from lab tests) that the μe gapped was 63.  This is 25% higher than the value given by our 

universal “gapping equation” which is a valid magnetic equation.  So which answer is correct?  

 

The answer to this thorny problem is that the TRENDLINE analysis is the one to use.  As we 

know, it takes into consideration the best fit curve from the data points listed for that material 

and these were determined experimentally.  These values of AL and μe gapped are larger than one 

would calculate using our “universal gapping equation”.   

 

The cause of this divergence is not so obvious.  We have said that the values in the catalog 

represent actual data taken on core sets.  They are the closest to the real world values one will get 

and should be taken as gospel.  Plotting the μe gapped obtained from both the catalog and our 

“universal gapping equation” shows that the deviation gets larger with larger gap.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 7.12:  Values of effective permeability from catalog and from equation  



This disagreement in permeabilities with gapping shows a smoking gun that is due to the 

fringing of the magnetic field between the core halves in the real world as we introduce larger 

and larger gaps.  When the magnetic field spreads out the “effective cross-sectional area” of the 

core increases raising the actual observed inductance. Our gapping equation doesn’t take this into 

account.  That is why the actual AL and μg effective values from the catalog are always higher 

(except at zero gap).    

 

At the risk of sounding repetitive, the best technique to use when working with cores that you 

plan to gap is to plot the data points for known values of gap from the catalog just like we did in 

Figure 7-9 because that data came from actual test cores and cannot be questioned.  Using a 

TRENDLINE analysis will yield an equation that can be used to determine AL and μe gapped 

values not found in the catalog.    

 

For our 1811-3C81 material core the official value for a 500 μm gap is: 

 

       AL = 133.5 nH/T
2
  

and      μe gapped  = 63 

 

as we determined from EXCEL.  These values include the effects fringing whatever the amount 

is.  The  value of 50.2 that we found for μ DOES NOT mathematically take into consideration the 

fringing and should not be used if you want to generate correct inductance values.  However:   

 

For those purists who want a closed form of inductance when the fringing field is taken into 

account, the following equation, from Encyclopedia Magnetica, generates a fringing factor that 

one may multiply by to increase the area of the core, Ae, and calculate a larger inductance, AL 

value or relative gapped permeability.   

 

  FF = 1 +  ( g /SQRT Ae)(ln (2G/ g))    (7-36) 

 

where  g is the gap length in meters, Ae the cross-sectional area of the core in square meters, and 

G is a height dimension on the window of the core, that is, the cross-section of the winding area 

Wa.  Using the values here for the 1811 pot core we find: 

 

    Ae = 0.433E-4 m
2
 

      g = 500E-6 m   

    G = 7.42E-3 m 

 

    FF = 1.257 

 

raising our low permeability of 50.2 to: 63.1.  Not a bad fix.  



Power Inductors for Ringing Choke Converters 

When we analyzed the RCC back in Chapter 3 the inductance value and current rating of the 

choke was determined.  To actually build up such an experimental circuit one would naturally 

ask how to construct the inductor so that it functioned properly.  Of course an off the shelf 

inductor from Mouser or Digi-key could be purchased but this would limit our ability to adjust 

inductance values as we work at the bench.   

 

To build an inductor one of the first questions would be:  What size and material core should we 

use?  Naturally the biggest core would work the best but there are practical constraints to 

consider such as weight, volume and cost. Over the years it became apparent that certain sized 

ferrite pot cores, when operated at approximately 30kHz in the role of a step-up transformers, 

could be called on to handle known power levels without overheating.  The following list was 

made from these observations on pot cores. : 

 

Table 7-1: Maximum power VS pot core size 

------------------------------------------------------------ 

  Pot core Size  Maximum Transformer Power level  

  -----------------  ---------------------------------------------- 

  1408   3 Watts 

  1811   10 

  2213   25 

  2616   50 

  3019   100 

  3622   200 

  4922   400 

 

Although AHV had great success building pot core based high voltage step-up transformers with  

this rule-of-thumb, there are many other types of cores and materials that can be utilized for the 

role of an inductor including RM and EC cores, toriodals, iron powder, MMP, or even Sendust 

cores.  The question is what core should we use?  If the core is too small the copper losses go up.  

If the core it too large the costs go up.  Is there a way to single out the best core?     

 

Fortunately about 40 years ago, Colonel William McLyman (who we mentioned earlier) working 

at Jet Propulsion Labs of Cal-Tech did an in-depth study of this question relating to power and 

core size and we will utilize his techniques here in finding the right sized core to use for both 

inductors and in the next chapter, transformers.    

 

We shall skip over the idea of making an air core inductor and only look at using a material with 

a high permeability – this will not only make it smaller and portable but will reduce the EMI as 

well.  All of the cores we will examine concentrate the magnetic field within their structure.   

 



As you probably know there are many cores and materials to choose from, each has their own 

particular advantage.  To help sort out this situation Colonel McLyman defined a term he called, 

AP, the area-product.  This was a parameter made from physical dimensions associated with the 

size of a particular core and the maximum currents it can safely handle.  It did NOT involve the 

material properties other than setting a limit on the maximum B field by composition.  Not 

wanting to plagiarize his work, we will only list some of the important steps he utilized in 

selecting an appropriate sized core. Those tasked with designing many inductors and 

transformers should find a copy of his out-of-print book: Transformer and Inductor Design 

Handbook printed in 1988. Treasure this book for the cornucopia of information it presents.    

 

The mathematical definition Colonel McLyman assigned to each core comes from this equation 

for the area-product: 

 

 Ap = (Cross-sectional area of the magnetic core)(Winding area)   (7-37) 

 

Where we have already worked with the cross-sectional area of the magnetic core, Ae.  The 

winding area Wa is a new term and describes the area that the turns will go into. 

 

 

 

 

   Figure 7.13:  Winding area Wa of different cores (in red) 

 

It effectively takes the two important parameters of a magnetic core and merges them together 

into one so a selection can be made when considering what size to choose.  Many core 

manufacturers such as Magnetics or Ferroxcube list this area-product as a parameter in their 

catalogs.  For example, in Figure 7-14 are tabulated parameters of pot cores a popular type used 



for high voltage transformers.  Notice the term WaAc listed, this is the area- product for the 

cores listed.  The area-product typically has units of cm
4
. 

     Figure 7.14: Pot core data 

 

As pot core sizes increase from a 704 (7mm diameter 4mm height) to a 4229 (42 mm diameter to 

29mm height), a factor of six in diameter, the area product increases 1840 times, a little more 

than 6
4
.   This fourth power relationship corresponds closely with the pot core power listing used 

by AHV that was found from experience and was mentioned earlier. Other types of ferrite cores 

such as EC and RM cores also have similar Area-Product listings. 

  

What about the electrical requirements?  Our converter has parameters such as frequency and 

maximum currents that we have to take into consideration to insure the core can handle it.  All of 

this was determined by Colonel McLyman in his inductor equation that gives the minimum value 

of Area-Product that the core should have:  

 

      Ap = [(2Energy)(1E4) / Bm Ku Kj)]
 x
    (7-38) 

 

where the Energy term is in Joules, the magnetic field Bm is the maximum B field that we will 

operate at (in Tesla), Ku is the window utilization number and Kj is the current density 

coefficient.  The exponent x is different for different cores.  His derivation of this equation used 

parameters that assumed a temperature rise of 25°C for core and copper losses.  We will now 

look at each K factor: 

 

 

 



Ku factor: In all applications we acknowledge the fact that no matter how close and tight we 

wind a bobbin or toroid, there are always air spaces in-between the turns.  The Ku 

term takes this into account by looking at several different parameters such as 

thickness of wire insulation, fill factor, actual window area being utilized and 

lastly, the use of insulation between layers such as tape or fish paper.  Fortunately, 

there are assumptions that can be made so that Ku can be reduced down to a 

simple number.  According to McLyman, a typical value for the copper fraction in 

the cores window area is: 

 

     Ku = 0.4     

 

 When we discuss winding high voltage transformers with small diameter wire 

such as #46 AWG, this value will drop to 0.3 because the insulation of the wire 

adds a cross-section that is comparable to the copper area of the conductor.  For 

large lamination cores operating at power line frequencies a Ku of 0.4 works very 

well.   

 

Kj factor: Is a parameter that relates to temperature rise.  It will allow us to calculate the 

current density in the wire we use to fabricate the inductor or transformer.  That 

relationship is given by: 

 

    J = Kj AP 
y
     (7-39) 

 

 

 Values of Kj , x and y (we will use y later) are as follows: 

 

 

Table 7-2: Parameters used in the Area-Product analysis (from McLyman) 

----------------------------------------------------------------------------------------------------------- 

     Bmax   Kj    x    y 

     --------  -----  -----  ----- 

  Ferrite:   0.25 Tesla 433  1.20  -0.17 

  Iron Powder:  0.3  403  1.14  -0.12   

  MMP:   0.3  403  1.14  -0.12 

  Sendust:  0.4  403  1.14  -0.12 

  Si-Fe Lamination: 1.2  366  1.14  -0.12 

  Tape-wound cores: 0.6  250  1.15  -0.13 

 

 

 



We will use the area product Ap in an analysis of four different inductor materials for a simple 

ringing choke converter that correspond to examples from previous chapters – just as a design 

engineer would do and follow the process to completion to determine what core material would 

be the best to select.  Inserting the above values we can generate equations that correspond to the 

various types of cores listed above.  This makes our equations a little easier to use: 

 

Table 7-3: Area product as a function of Energy (from McLyman) 

--------------------------------------------------------------------------------------------------------- 

 Ferrite pot core:   Ap = [461 Energy]
1.20 

 
 

Powdered iron toroid:   Ap = [413 Energy]
1.14 

  

 MMP toroid:    Ap = [413 Energy]
1.14 

 

 Sendust    Ap = [310 Energy]
1.14 

 Si-Fe Lamination:   Ap = [114 Energy]
1.14

 

 Tape-wound cores:   Ap = [333 Energy]
1.15

 

 

The energy is the same no matter what core we use:   

 

   Energy  = ½ Li
2   

       
 

If L is in Henrys and the current i in Amperes, the Energy term is in Joules.  This allows us to 

determine the size of the core.  Let’s try an example.  

   

Going back to the Ringing Choke Converter, we can fine tune our list and say that we will either 

utilize a pot core or a toroid core (because the number of turns is not too great).  We will leave 

the tape-wound and lamination types for other uses due to several reasons.  First, lamination 

transformers are fine for power line frequencies of 60Hz but show excessive eddy current and 

hysteresis losses at frequencies above 400Hz.  Tape-wound cores using Permalloy compositions 

are more or less limited to frequencies below 20kHz due to eddy current losses.  The newer core 

materials such as amorphous or nanocrystalline types are usable to much higher frequencies, 

perhaps above 100kHz, but their availability is generally narrow.  Therefore, we will limit our 

search to the first four core materials for the ringing choke converter we explored in Chapter 3.  

 

 Example 6:  Three watt Ringing Choke Inductor Design: 

 For one of our examples dealing with ringing choke converters we utilized a 478 uH 

 inductor that had to pass a peak current of 0.679 Amperes when it converted 9 volts to 30 

 volts at a power level of 3 Watts.  This was used to drive an ultraviolet LED array for 

 some sort of medical equipment (replacement of a Wood’s Lamp).   Operating at 20kHz, 

 the RCC ran with a high efficiency of 91.1%.  From the chart of the waveforms shown in 

 Figure 7-6, the current ramps start from zero and rise to 0.679 Amperes peak.  In other 



 words, the current has an average level of 0.3395 Amperes with an AC component of +/- 

 0.3395 Amperes riding ion it.  This will come up when we calculate our core losses.  

 

    Figure 7.15:  9 to 30V ringing choke converter 

 

 Because our  L = 478 uH and I peak = 0.679 Amperes we find the Energy term to be:  

 

  Energy  = ½ LI
2  

  = 0.000110 Joules 

 

 Calculating our area products for the four different cores we are testing as candidates: 

 

   Ap = 0.0280
 
cm

4 
ferrite pot core  

   Ap = 0.0295
 
cm

4 
powdered iron 

   Ap = 0.0295 cm
4
 MMP core 

   Ap = 0.0212 cm
4
 Sendust core 

    

 As any engineer would, let’s see how each one stacks up in this quest to find the best core 

 to use.  The area-product will allow us to select the proper size for each type.  Let’s 

 examine the four core types.      

 

 



Ferrite Pot Core:  

We need a core with an Ap of: 0.028 cm
4
.  The 1408 size comes in at 0.02 cm

4
,  too small and 

the 1811, the next size larger, has an Ap of 0.07cm
4
 quite a bit larger but since there is nothing 

in-between we will select that core.  Here is information concerning the 1811 core: 

 

   1811 Core: 

    Ap    0.074 cm
4
 

    Window area:   0.171 cm
2
 

    Area of core:   0.433 cm
2
  

    Magnetic path length:  2.58 cm 

    Volume:   1.12 cm
3
 

    Mass:    6.0 grams 

 

Powdered iron:  

 We need at least an area product of Ap = 0.0295 cm
4
.   The 050 size powdered iron toroid from 

`Magnetics has an Ap = 0.042 cm
4
, more than we need but this is the smallest available.  

 

   Magnetics 050 XFlux toroid: 

    Ap    0.042 cm
4
 

    Window area:   0.383 cm
2
 

    Area of core:   0.109 cm
2
 

    Magnetic path length:  3.12 cm 

    Volume:   0.34 cm
3
 

    Mass:    2.3 grams 

     

MMP core:   

We need an Ap of at least 0.0295 cm
4
.  The 050 MMP core from Magnetics with an Ap of 0.042 

cm
4
 will work.      

    

   Magnetics 050 MMP core parameters: 

    Ap    0.042 cm
4
 

    Window area:   0.383 cm
2
 

    Area of core:   0.109 cm
2
 

    Magnetic path length:  3.12 cm 

    Volume:   0.34 cm
3
 

    Mass:    2.5 grams 

  

 

 

 



Sendust: 

We need Ap = 0.0212 cm
4
, a little bit lower than the others because we are running it at a higher 

magnetic field, the 040 Kool Mu (Sendust) core from Magnetics will work, it  has an Ap value of 

0.024 cm
4
 .       

   Magnetics 040 Kool Mu (Sendust) Core parameters: 

    Ap    0.024 cm
4
 

    Window area:   0.268 cm
2
 

    Area of core:   0.090 cm
2
 

    Magnetic path length:  2.70 cm 

    Volume:   0.243 cm
3
 

    Mass:    1.53 grams 

 

Now that we have our four candidate cores selected we need to determine the number of turns 

for each core to achieve the required inductance of 478 μH to make our step-up converter.  This 

will require us to look at the maximum current density which according to McLyman is given by 

the following equation that allows a copper wire temperature rise of 25 °C, repeating the 

equation for current density: 

 

     J = Kj Ap 
y
     (7-40) 

 

We must insert the core data of the core we will utilize where we use KJ from Table 7-2.  Insert 

what corresponds to the core you have selected.  

 

Ferrite pot core (1811 core size): J = (433)(0.07)
-0.17

    = 680  Amperes/cm
2
 

Powdered iron (050 core size): J = (403)(0.042)
-0.12

     = 589  Amperes/cm
2
 

MMP core (050 core size):  J = (403)(0.042)
-0.12

     = 589  Amperes/cm
2
 

Sendust (040 core size):  J = (403)(0.024)
-0.12

    = 630  Amperes/cm
2
 

 

This will limit the temperature rise in the copper to less than 25°C.  From our simulation (in 

Chapter 3) we know the maximum current of 0.679 Amperes will flow allowing us to calculate 

the bare wire size needed: 

 

   Awire(Bare) = Imax / J     (7-41) 

 

Calculating out the bare cross-sectional area needed gives us the wire size (when looking at the 

wire table in Appendix A in back of this chapter).    

 

 

 

 



Ferrite pot core: Awire(Bare)   = (0.679A)/(680A/cm
2
)  =  0.990E-3cm

2  
=>    #27 AWG 

Powdered iron: Awire(Bare) = (0.679A)/(589A/cm
2
) = 1.153E-3cm

2 
=> #26 AWG 

MMP core: Awire(Bare) = (0.679A)/(589A/cm
2
)  = 1.153E-3cm

2 
=> #26 AWG 

Sendust core: Awire(Bare)   = (0.679A)/(630A/cm
2
)  = 1.078E-3cm

2  
=> #26 AWG 

 

Our selection was based on the following information:  

 

Information:  #27 AWG bare copper cross sectional area of: 1.021E-3 cm
2
. 

      #26 AWG bare copper cross sectional area of: 1.280E-3 cm
2 

 

and:   #27 AWG insulated wire cross sectional area of: 1.313E-3 cm
2
. 

   #26 AWG insulated wire cross sectional area of: 1.603E-3 cm
2 

 

Now that we know the wire size we can find approximately how many turns of wire we need on 

the selected core.  We need to use the insulated wire area values because that is the closest to 

real-world and as you can see, the insulation does take up some of the volume.  Remember, we 

are working four different core materials at the same time to see which one will work the best.     

 

Using this data we can determine the maximum number of turns we can place on each selected 

core: 

   N = Wa S2 / Awire      (7-42) 

 

where S2 is a fill factor of 0.6 that takes into account the tightness of the winding.   

 

Ferrite pot core: N = (0.171)(0.6)/(0.00102) = 78 turns #27 AWG 

Powdered iron: N = (0.383)(0.6)/(0.00128) = 143 turns #26 AWG 

MMP core:  N = (0.383)(0.6)/(0.00128) = 143 turns #26 AWG 

Sendust:  N = (0.268)(0.6)/(0.00128)   = 100 turns #26 AWG 

 

Now that we know the approximate number of turns that will fit in the winding area of our core 

and generate a temperature rise less than 25 °C, the required approximate AL value can be 

determined.  We say approximate because at this point the exact formulation one can buy for the 

toroid is set in certain steps by the manufacturer.  Unlike pot cores the three different toroidal 

powder cores cannot be adjusted for AL values, they must be purchased in set increments.  We 

will pick the one that allows us to create the inductor we need.   Using our inductance equation: 

 

     AL  = L / N
2
  

 

 

 



we find that our cores must have something close to the following AL values: 

 

Ferrite pot core: AL  = (478 μH) /78
2
  = 78 nH / Turn

2
   

Powdered iron: AL  = (478 μH) / 143
2
 = 23 nH / Turn

2
 

MMP core:  AL  = (478 μH) / 143
2
 = 23 nH / Turn

2
 

Sendust:  AL  = (478 μH) / 100
2
 = 48 nH / Turn

2
 

 

Because toroidal cores are only made in certain AL values we will have to select a core from the 

catalog that has the closest value to what we need.   With a ferrite pot core we can adjust the AL 

value by simply inserting a gap in-between the core halves.   

 

Gapping the ferrite core: 

As mentioned earlier, you can purchase pre-gapped ferrite cores where the center leg is shorter.  

This presents a gap in the middle when the two core halves are placed together but these gaps 

only come in about a half dozen set steps from “no gap” to 710 μm for the 1811 core size.   

 

Determining the total gap: 

There is a very good method to determine the gap.  We will utilize the gapped data and plot the 

AL values as a function of gap as we did in Figure 7-9.  From this a TRENDLINE can be made 

and the correct gap determined.  For example, the TRENDLINE equation  for AL values of the 

1811 core with 3C81 material gave (from chart 7-9): 

 

    AL = 26447 (gap in μm)
-0.851

       AL in nH/T
2
   

 

Because we are looking to determine the gap for an AL of 78 nH/T
2
 we have, using logs: 

 

     AL = 26447 (gap in μm)
-0.851

        

    log10 (AL) = -0.851 log10 (gap in μm) + log10 (26447) 

    log10 (78) = -0.851 log10 (gap in μm) + 4.422 

    1.892  = -0.851 log10 (gap in μm) + 4.422 

    -2.53  = -0.851 log10 (gap in μm) 

    2.97  = log10 (gap in μm) 

      total gap in μm = 10
2.97 

     total gap in μm = 939 μm  (0.037 inches) 

 

We could fabricate our inductor out of two un-gapped cores by using a 0.0185 inch gapping 

material between the core halves.  Because this may be a tall order to get such a specific gap, it is 

probably easier to use a 0.02 inch gap material which will give us a total gap of 1016 μm.   Let’s 

set this in stone and determine both AL and μe gapped for this gap (1016 μm) from the 

TRENDLINES: 



 

    AL = 26447 (gap in μm)
-0.851

           

    AL = 73 nH/T
2
        

 

Our gapped effective permeability is: 

  

    μe gapped = 12883 (gap in μm)
-0.856

           

      μe gapped = 34.4      

 

Knowing our AL value, we can determine the number of turns we will need:  

 

         L = AL N
2 
       

   478 μH  = (73E-9)(N
2
) 

    N = 81 turns #27 AWG one section bobbin. 

 

Let’s test it using the “short” inductance equation with μe gapped:  

 

   L = μe gapped μo N
2
 (Ae) /  e     

   L = (34.4)(4πE-7)(81
2
)(0.433E-4) / (0.0258) 

   L = 476 μH 

 

If we select the ferrite core, it looks like it will be an un-gapped 1811 pot core 3C81 material 

with a 1016 μm total gap made from a piece of 20 mil insulation material for use on the center 

post having 81 turns of #27 AWG copper wire.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Powdered Iron cores 

 

    Figure 7-16: 050 sized iron powder core 

 

For the powdered iron core we need an AL vlaue of 23 nH/T
2
.  The magnetics core 078051A7 

with an effective permeability of μ = 60 has an AL value of 27 nH/T
2
, which is close.  We can 

calculate the exact number of turns that will give us 478 uH.  The relative permeability of this 

core is set by its composition to be sixty and therefore we cannot adjust it as we did with the 

ferrite pot core.  

 

     L = AL N
2 
 

    478 μH = (27E-9)(N
2
) 

     N = 133 turns #26 AWG 



 

MPP cores:  

 

     Figure 7-17: MPP core 

 

For the MPP core we need an AL vlaue of 23 nH/T
2
.  The Magnetics core C055051A2 has an AL 

value of 27 nH/T
2
, which is close.  Again, it is a core with an effective permeability of 60.  We 

can calculate the exact number of turns that will give us 478 uH.  The relative permeability of 

this core is set by its composition to be μ=60. 

 

     L = AL N
2 
 

    478 μH = (27E-9)(N
2
) 

     N = 133 turns #26 AWG 

 

 



 

Sendust cores: 

 

     Figure 7-18: Sendust core 

 

For the Sendust core we need an AL vlaue of 48 nH/T
2
.  The Magnetics core 0077130A7 has an 

AL value of 53 nH/T
2
, which is close.  This core has an effective permeability of 125.  We can 

calculate the exact number of turns that will give us 478 uH.  The relative permeability of this 

core is set by its composition to be μ=125 and like the previous toroids we cannot change it.  

 

     L = AL N
2 
 

    478 μH = (48E-9)(N
2
) 

     N = 100 turns #26 AWG 

 



Copper Losses 

The McLyman analysis we are using limits the copper temperature rise to 25 degrees C.  

Nevertheless, we should calculate the copper wire loss for our four different cores to see how 

they compare.  All we have to do is determine the DC resistance for each winding and use: 

 

     Power  = i 
2 

R      

 

To determine the loss we will use the maximum current value in our calculation of 0.679 

Amperes.  While this is not exactly correct (because the current level is usually much below this 

number and even goes to zero at one point) we will err on the side of caution.  

 

Table 7-4: Copper losses for each core type 

----------------------------------------------------------- 

   Core Turns AWG MLT Wire length Ω/cm         R  loss 

      (cm/T)      (cm) (μ – Ω)   (Ohms) (W) 

   ------- ------- ------- ------ -------------- -------- ------------- ------ 

Ferrite pot core:  1811  81 27 3.66 296cm  1687 0.50Ohms 0.23  

Powdered iron:  050 133 26 2.11 281cm  1345 0.38Ohms 0.18  

MPP core:   050 133 26 2.11 281cm  1345 0.38Ohms 0.18 

Sendust:   040 100 26 1.81 181cm  1345 0.24Ohms 0.11 

 

showing that our ferrite core displays the most heating and the sendust core the least.  Now to 

calculate the core losses.  

 

Core losses are now calculated: (f = 20kHz) 

Below is a profile of the inductor current in our RCC for Example 1 (from Chapter 3): 

 

 

 

 

 

 

 

 

     

 

 

 

    Figure 7-19:  Inductor current (green)  

 



Because the current swings from zero to 0.679 Amperes, it has a “DC component” of 0.3395 

Amperes and the AC component of +/- 0.3395 Amperes. 

    

Core loss is generated only by the AC component.  A constant DC flux can only cause Ohmic 

losses which are not related to the core and we have calculated these already. Magnetic materials 

by their very nature have both eddy current and hysteresis losses caused by changing B fields 

that sap energy from the driving circuitry and wind up as heat.  Core loss density is a function of 

one-half of the AC flux swing (1/2 ΔB = Bpeak)  

 

1811 Ferrite pot core loss: 

Because we are driving our inductor with an AC waveform (see Figure 7.19), the B field created 

can be determine from Faraday’s law: 

 

    Bmax = Vp /NAe2π f      

 

we can easily calculate the Bmax swing.  Plugging in the numbers for the 1811 pot core and data 

from Figure 7.19 we have: 

 

    Bmax = (30)/((81(4.33E-5)(2π)(20,000) 

    Bmax = 0.06 Tesla) 

 

Looking at the core loss chart (from Ferroxcube) for the 3C81 material, although a frequency of 

20kHz is not listed, a region close by (red dot) may be assumed:   

 

 

 

 

 

 

 

 

 

 

 

 

 

       

 

 

     Figure 7.20:  Loss chart 3C81 



And obtain a loss of about 5mW/cm
3 

.   Now, using the volume of our 1811 core we can 

determine the core losses: 

 

   BAC peak loss (20kHz)  volume  loss 

   -------  ---------------  --------------  --------  

Ferrite pot core: 0.06 Tesla 5 mW/cm
3
  1.12 cm

3
  0.0056 W 

 

Powdered Iron core loss:  

For our powdered iron core, the 0078051A7 we again can use Faraday’s equation to find the B 

field: 

    Bmax = Vp /NAe2π f      

    Bmax = (30)/((133)(1.09E-5)(2π)(20,000) 

    Bmax = 0.164 Tesla) 

 

 
 

 

    Figure 7.21:  Powdered iron loss chart 

  

 

   BACpeak  loss (from chart) volume  loss 

   ---------- ------------------- -----------  --------  

Iron powder core: 0.164 Tesla 400 mW/cm
3
  0.34 cm

3
  0.136 W 

 



MPP core loss: 

For our MPP core, the C0055051A2 we again can use Faraday’s equation to find the B field: 

 

    Bmax = Vp /NAe2π f      

    Bmax = (30)/((133)(1.09E-5)(2π)(20,000) 

    Bmax = 0.164 Tesla) 

 

 

 
 

    Figure 7.22: MPP Core loss chart  

 

   BACpeak  loss (from chart) volume  loss 

   ---------- ------------------- -----------  --------  

MPP core : 0.164 Tesla 110 mW/cm
3
  0.34 cm

3
  0.037 W 

 

 

 

 

 

 

 

 



Sendust core loss: 

For our Sendust core, the 0077130A7 we again can use Faraday’s equation to find the B field: 

 

    Bmax = Vp /NAe2π f      

    Bmax = (30)/((100)(0.9E-5)(2π)(20,000) 

    Bmax = 0.265 Tesla) 

  

  

 
  

 

    Figure 7.23:  Sendust core loss chart 

 

 

    BACpeak  loss (from chart) volume  loss 

   -------  ---------------  --------------  --------  

Sendust core loss: 0.265 Tesla 300 mW/cm
3
  0.243 cm

3
  0.073 W 

 

 

 

 

 

 

 

 



Table 7-5: Summation of losses for our 478 uH inductor: 

---------------------------------------------------------------------- 

     Copper loss  Core loss  Sum of loss 

     ------------------  -------------  --------------- 

1811   Ferrite pot core: 0.23 W   0.0056 Watts  0.24 Watts 

0078051A7 Powdered iron: 0.18 W   0.136   0.32 

0055051A2 MMP core:  0.18 W   0.037   0.22 

0077130A7 Sendust:  0.11W   0.073   0.18 

 

This analysis shows that the Sendust core will offer the lowest energy loss. 

 

FROM MAGNETICS ONLINE:  

An online calculator furnished by Magnetics allows us to compare our direct calculations with 

theirs obtained by a proprietary analysis technique: 

 

Table 7-6:  Core Losses from the online calculator 

------------------------------------------------------------------ 

     Copper loss  Core loss  Sum of loss 

     ------------------  -------------  --------------- 

1811   Ferrite pot core: 0.24 W   0.0042 Watts  0.24 Watts 

78054  Powdered iron: 0.18 W   0.085   0.27 

55045  MMP core:  0.18 W   0.027   0.21 

77050  Sendust:  0.11W   0.04   0.15 

 

According to Magnetics, it looks like the Sendust core will dissipate the least amount of heat 

confirming our earlier loss analysis.    

 

From this analysis, the basic inductor core costs are:   

 

Ferrite pot core: Total including bobbin: $2.99 

 

Powdered iron: Eaton: CTX500-1-52LP-R 500uH  $5.93 

 

MPP core:  Cores: MMP:  API Delevan Inc.PTHF500-894 $4.41 

   from Micro-Semiconductor 

 

Sendust:  Bourns: 2100LL-471-H-RC 470 uH 2.3A  $ 3.40 

 

 

 



How much will the inductor change when current is flowing through? 

All of the above may be invalidated if we find out that our inductance varies by an unusable 

amount.  All inductors made with ferromagnetic material have permeabilities that change over 

temperature, field strength and time.  As the core circles around it’s BH curve the effective mu is 

constantly changing.   

 

Ferrite 3C81 inductor change: 

In order to see what the change in inductance is we must see how the permeability changes with 

B field.  Figure 7.21 shows the BH excitation based on a B field maximum of 0.06 Tesla. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Figure 7.24:  Maximum BH curve for 3 Watt converter 

 

The B field excitation is in one direction only in the core because the current flow is uni-

directional.  Because the B field maximum is far away from any Bsat values (B > 0.25 T) we can 

rest assured that the inductance calculated of 478 μH will remain very close to that value.   

 

 

 

 

 



Iron Core Inductance Drop-Off: 

The iron powder core, 78051A7, shows the following roll-off in inductance with a calculation of 

the value of current-turns as presented on the Magnetics website for the core we are using. Here 

the x axis is not H field but simply Ampere-Turns, and if we insert the values of (0.679)(133) = 

90.3 it looks like we will not suffer any drop in AL value more than a few percent.   Remember 

we had used 27 nH/T
2
 in our calculation for the number of turns required.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 Figure 7.25:  AL drop off as a function of current in the 78051A7 iron powder core 

 

MPP Core Inductance Drop-Off: 

The molypermalloy powder (MPP) core (MPP) powder core, the C0055051A2 shows the 

following roll-off in inductance.  It looks like we will suffer a drop in AL value from 27 to 25 

nH/T
2
 and may want to take this into consideration when calculating the final number of turns.    

 

  

 

 

 

 

 

 

 

 

 

 

  

 Figure 7.26:  AL drop off as a function of current in the C0055051A2 MPP core 

 



Sendust Core Inductance Change 

The Sendust core ,0077130A7, shows the following roll-off in inductance with DC component of 

waveform. If we insert the values of (0.679)(100) = 67.9 on the x axis, it looks like our AL value 

will drop from 53 to 33.  This can be adjusted for by increasing the turns from 100 to 126 – 

which further decreases the AL value.     

 

 
 

   Figure 7.27:  Sendust core inductance drop-off 

 

 

 

 

 

 

 

 

 

 



Analysis and Final Core Selection for the 3 Watt converter 

The fact that the Sendust core drops 62% in its AL value sets off a danger signal when selecting 

this core.  Even though it offers the lowest losses at 0.15 Watts, the runner up in that area is the 

MPP core with only a slight more loss at 0.22 Watts.  The good feature of the MPP core is that it 

doesn’t change more than a few percent and during an overload condition can expect to hold the 

inductance more than the Sendust core.  This may be a safety factor.  If cost is not a gating item 

the MPP core would be selected.    

 

Input Line Chokes 

To meet certain EMI specifications a power converter operated either from an AC power main or 

a DC bus must limit the amount of electrical noise placed back onto its input line.  This was not 

so much of a problem when 60Hz power transformers were utilized to convert 120 VAC to the 

needed voltage.  With the advent of switching power supplies in the 1980’s, elaborate filtering 

was necessary to prevent high frequency signals from traveling outwards from the power stage 

making the power line into an antenna and radiating the energy further onward.  Not only can 

this unwanted EMI noise affect communications but sensitive instruments such as medical 

devices as well.  For example, a sensitive 16-bit analog to digital converter used in a signal path 

of, say, a medical system should not pick up switching noise coming from the supply that 

provides power.  Imagine an EKG machine used in proximity to a noisy 20kHz switching power 

supply – the important signals from the heart may be overshadowed by the noisy switching 

power supply.  In addition, the problem is severe with airborne equipment, even to this day, 

certain types of electronics is forbidden for use on commercial flights.  Military airborne systems 

must meet specified sections on conducted emissions of MIL-E-461.   

 

The manufacturer of any power converters have to fulfill certain EMI regulations that are put in 

place by governments all over the world to protect reliable functionality of different electronic 

systems simultaneously. 

 

EMI comes in two forms: radiated EMI and conducted EMI. The most effective ways of 

reducing radiated EMI is to optimize the PCB layout and to use a shielded metal box to house the 

converter in.  However, this may not be practical and in most cases is very costly. 

 

Conducted EMI is typically attenuated by additional input line filtering.  The reduction of noisy 

switching signals is a black magic art.  It is almost impossible to simulate because computer 

models are not available for every configuration of converter placed inside of a box so big.   

When power switching devices operate on and off, they will generate large sometimes 

discontinuous currents. These currents will appear at the input of a buck converter, the output of 

a boost converter, and at both the input and output of flyback and buck-boost converter designs. 



About the only sure fire way of minimizing the output of conducted emissions back onto the 

input line is to place as large an inductor in series with the power feed lines.  A pi-filter 

arrangement will help quench the noise and should be designed in.    

 

Usually the problem is a matter of space allocation.  The input filter is usually left to the last to 

allocate room for, where the converter topology is always given first preference.  With this in 

mind, the following lists the effective impedance of inductors as a function of frequency: 

 

Table 7-7:  Inductor impedance values 

------------------------------------------------- 

 Frequency  Inductance  Impedance 

 ------------  ------------  ------------- 

 20kHz   100 μH  12.5 Ohm 

 200 kHz  100 μH  125 Ohms  

 

 20kHz   1 mH   125 Ohms 

 200 kHz  1 mH   1.25K Ohms 

 

 20kHz   10 mH   1.25K Ohm 

 200 kHz  10 mH   12.5K Ohms 

 

Considering an 10 Watt AC converter operating from 120 VDC, the load impedance as seen by 

the power plug is: 

 

  Load resistance: 120
2
/10 = 1.4K Ohms    

 

You may make the assumption that the signals start with a generator of this impedance.   If we 

put an inductor of 100 μH in series with the lines, even without the capacitance, the EMI will 

nearly drop in half if the converter is operating at 20kHz.  A 1 mH inductor will reduce the EMI 

by a factor of ten.  Adding capacitors from line to line will certainly help as well. 

 

 

 

 

 

 

 

 

 

 



Example 7: 

Design of 10 mH INPUT LINE INDUCTOR for a 10 Watt AC line product 

A 10 Watt converter operating from the 120 VAC line will draw in approximately 100 mA.   If 

there is digital circuitry inside the power converter the AC line must be stepped down to low 

voltage to operate the semiconductors.  This usually means some type of switching converter.  

Because Wire has a self inductance of about 400 nH / foot we will take this into consideration.   

 

   Figure 7.28:  SPICE test circuit for EMI reduction 

 

Figure 7-46 shows the simple SPICE test circuit one can use to determine the effect of filter 

values on conducted EMI noise.  Here we have a 60Hz power source operating into a 10 Watt 

resistive load.  Both the line cord resistance and inductance is assumed to be 0.05 Ohms and 12 

uH respectively (1440 Ohms).  The source of the EMI noise is a square wave of 1.0 Vpp shown 

at Vs2.  C1 and L2 are the filter we are attempting to design.  Therer is a practicle value to C1 

where capacitors above 0.01 uF tend to draw currents that are in the same order of magnitude as 

the load for a 10 Watt device (although they are 90 ° out of phase with the voltage).  

 

   Capacitance  Current drawn 

   --------------  --------------  

   0.001    45 uA  

   0.01   450 uA 

   0.1   4.5 mA 

   1.0   45 mA 



and will cause Ohmic losses when operating on any resistance in the path.    Figure 7-47 shows 

the effect of place various inductor values in series with the line on the unit converter side of the 

capacitor.  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

  

 Figure 7.29:  EMI as a function of series line inductor for the 10W load of Figure 7.46 

 

As one can see, the largest drop of EMI conducted back to the input line occurs when the 

inductance value is in the vicinity of 10 mH or larger.    

 

Design of 10 mH input line choke 

We will use an MPP core in this design.  Let’s find McLyman’s Area-Product to get the size we 

need:  

 

       Ap = [(2Energy)(1E4) / BmKuKj)]
 x   

 

 

From earlier:   Ku = 0.4 

  Kj  = 403 

  Bmax: = 0.3 Tesla 

  x = 1.14 

  L = 0.01 H 

  i = 0.1 A 

 

Therefore:  Energy = 1/2L i 
2
 

   Energy = 5E-5 Joules 



 

Therefore the Area-Product is: AP  = 0.012 cm
4
 

 

A look at the Magnetics catalog gives this core:  040 size (AP = 0.024 cm
4
) 

    

MMP core:  Magnetics 040 MMP core parameters: 

    Ap    0.024 cm
4
 

    Window area:   0.268 cm
2
 

    Area of core:   0.0906 cm
2
 

    Magnetic path length:  2.69 cm 

    Volume:   0.243 cm
3
 

    Mass:    1.97 grams 

  

With that settled we need to determine the number of turns we must wind on the core.  This will 

require us to look at the current density which according to McLyman is: 

 

   J = Kj Ap
y 

   J  =  (403)(0.024)
-0.12

   = 629  Amperes/cm
2
 

   Awire(B) = Imax / J 

MMP core:  Awire(B) = (0.1A)/(676A/cm
2
)  = 1.580E-4cm

2 
=> #35 AWG 

 

Information:  #35 AWG bare copper cross sectional area of 0.1589E-3 cm
2
. 

      #35 AWG insulated wire cross sectional area of 0.2268E-3 cm
2 

 

Now that we know the wire size that will limit temperature rise to 25 °C (by virtue of the Kj 

parameter), we can find approximately how many turns of wire we need on the selected core.  

We need to use the insulated wire area values because that is the closest to real-world.  Using 

this data we can determine the maximum number of turns we can place on each selected core: 

 

   N = Wa S2 / Awire       

 

where S2 is a fill factor of 0.6 that takes into account the tightness of the winding.   

 

MMP core:  N = (0.268)(0.6)/(0.0002268) = 708 turns #35 AWG 

 

This is a huge amount of turns to place on a toroid.  We need to stop right here because winding 

this toroid would be cost prohibitive.   

 

Would a ferrite pot core be any better?  The bobbins for a ferrite pot core are much easier to 

wind.  Let’s see what the Ap number would be: 



       Ap = [(2Energy)(1E4) / BmKuKj)]
 x 

  

   Ku = 0.4 

   Bmax = 0.25 

   KJ = 433 

   x = 1.20 

 

   Ap needed = 0.011 cm
4 

 

Chart 7-8 says that a 1408 pot core has an area product of 0.02 cm
4
.    

 

   1408 Core: 

    Ap    0.0236 cm
4
 

    Window area:   0.094 cm
2
 

    Area of core:   0.251 cm
2
  

    Magnetic path length:  1.98 cm 

    Length per turn:  2.89 cm 

    Volume:   0.495 cm
3
 

    Mass:    3.2 grams 

 

With that settled we need to determine the number of turns we must wind on each core.  This 

will require us to look at the current density which according to McLyman is given by the 

following equation that allows a copper wire temperature rise of 25 °C: 

 

     J = Kj Ap
y     

(7-43) 

 

We must insert the core data of the core we will utilize where we use KJ from the previous chart 

listing.  Insert what corresponds to the core you have selected.  

 

Ferrite pot core (1811 core size): J = (433)(0.0236)
-0.17

   = 819  Amperes/cm
2
 

 

Because we know the maximum current of 0.10 Amperes will flow, we can calculate the bare 

wire size needed:  

   Awire(B) = Imax / J 

Ferrite pot core: Awire(B) = (0.10A)/(819A/cm
2
) = 0.122E-3cm

2  
=> #36 AWG  

 

Our selection was based on the following information:  

 

Information:  #36 AWG bare copper cross sectional area of 0.127E-3 cm
2
. 

      #36 AWG insulated wire cross sectional area of 0.181E-3 cm
2 



Now that we know the wire size that will limit temperature rise to 25 °C (by virtue of the Kj 

parameter), we can find approximately how many turns of wire we need on the selected core.  

We need to use the insulated wire area values because that is the closest to real-world.  Using 

this data we can determine the maximum number of turns we can place on each selected core: 

 

   N = Wa S2 / Awire 

 

where S2 is a fill factor of 0.6 that takes into account the tightness of the winding.   

 

Ferrite pot core: N = (0.094)(0.6)/(0.000181) = 311 turns #36 AWG 

 

Now that we know the approximate number of turns that will fit and have the limited 

temperature rise, the required approximate AL value can be determined.   

 

   AL  = L / N
2
  

Ferrite pot core: AL  = (0.01 H) /311
2
  = 100 nH / Turn

2
   

 

The Ferroxcube catalog gives AL values for the 1408 core made of 3C81 material.   

 

    Figure 7.30:  1408 Pot core AL values 

 

Looks like a total gap of 390 μm (0.015 inches) will allow us to have an exact AL value equal to 

100 nH/T
2
.  The effective gapped permeability as listed in the chart is 63.  Winding a bobbin 

with 311 turns is much easier than winding a toroid.   An insulating sheet of 7.5 mils is probably 

obtainable so this is what we will use – or we can purchase already pre-gapped cores. . 

 

 

 

 

 

 

 



Design of filter chokes 

Removing the ripple in a 60Hz brute-force high voltage power supply, is no easy task: 

 

 Example 8:  Design a filter for a Variac operated 5kV 600 Watt high voltage power 

 supply in a 19 inch rack 3U high.   The following schematic shows just such a topology: 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

 

 

 

 

    Figure 7.31:  Five KV 600W supply 

 

To keep the output ripple below 1%, (50V) and also keep minimum value on stored energy by 

not using too high filter capacitors, a pi-network choke of 0.5 Henrys will be used.  This choke 

will use silicon steel laminations and must be able to handle 0.12 Amperes without much roll-off 

in inductance.   Since this will fit within a 19 inch rack the size is not too important.  

 

Table 7-8: Parameters used in the Area-Product analysis 

----------------------------------------------------------------------------------------------------------- 

    Bmax   Kj  x  y 

    --------  -----  -----  ----- 

 Si-Fe Lamination: 1.2  366  1.14  -0.12 

 Si-Fe Lamination: Ap = [114 Energy]
1.14

 



   Energy  = ½ Li
2   

       
 

If L is in Henrys and i in Amperes, the Energy term is in Joules.   Because our  L = 0.5 H and i 

peak = 0.12 Amperes we find the Energy term to be:  

 

   Energy  = 0.0036  Joules 

 

This is one spot where silicon steel laminations shine: 

 

   Ap = 0.362
 

cm
4     

silicon steel  

   

Silicon steel C core:  

 
 

   Figure 7.32:  Silicon steel C core 

   

Nicore: CD6.5x12.5x8 

    Ap    0.478 cm
4
 

    Window area:   0.64 cm
2
 

    Area of core:   0.747 cm
2
  

    Magnetic path length:  5.07 cm 

    Volume:   4.14 cm
3
 

    Mass:    29 grams 

    AL   9257 nH/T
2  

no gap 

    μe    5000 



We have now selected the sizes of our core.  Next, we need to determine the number of turns we 

must wind on our core.  This will require us to look at the maximum current density which 

according to McLyman is given by the following equation that allows a copper wire temperature 

rise of 25 °C: 

 

     J = Kj Ap
y
      

 

We must insert the core data of the core we will utilize where we use KJ and y from Table 7-2.  

Insert what corresponds to the core selected.  

 

Lamination core:  J = (534)(0.478)
-0.12

    = 583  Amperes/cm
2
 

 

This will limit the temperature rise in the copper to less than 25°C.  Because we know the 

maximum current of 0.12 Amperes will flow, we can calculate the bare wire size needed: 

Calculating out the bare cross-sectional area needed gives us the wire size (when looking at the 

wire table in Appendix A in back of this book).    

  

   Awire(Bare) = Imax / J      

 

Lamination core: Awire(Bare) = (0.12A)/(583A/cm
2
) =  0.2056E-3cm

2  
=> #34  

 

Our selection was based on the following information:  

 

Information:  #34 AWG bare copper cross sectional area of 0.2011E-3 cm
2
. 

      #34 AWG insulated wire cross sectional area of 0.2863E-3 cm
2
. 

   
 

Now that we know the wire size we can find approximately how many turns of wire we need on 

the selected core.  We need to use the insulated wire area values because that is the closest to 

real-world.     

 

Using this data we can determine the maximum number of turns we can place on the selected 

core: 

   N = Wa S2 / Awire       

 

where S2 is a fill factor of 0.6 that takes into account the tightness of the winding.   

 

Lamination core: N = (0.64)(0.6)/(0.0002863) = 1341 turns #34 AWG 

 



Now that we know the approximate number of turns that will fit in the winding area of our core 

and generate a temperature rise less than 25 °C, the required approximate AL value can be 

determined.   

     AL  = L / N
2
  

 

Lamination:  AL  = (0.5H) /1341
2
  = 278 nH / Turn

2
   

 

Determining the total gap: 

We will use the “universal gapping equation” of Equation 7-35.  Here is a case where we have to 

use it because we have no data as to the gaped AL values so there is no TRENDLINE to plot.  

We only have a non-gapped value for this core from the manufacturer: 

 

    AL = 9257 nH/T
2  

 

 

But we have our dimensions of the core.   

 

   μe gapped =  μe nogap / (1 +  μe nogap lg / le))    

  

with the “short” inductance equation: 

 

   L  = μe gapped μo N
2 
Ae /  e  

   0.5  = μe gapped (4πE-7)( 1341
2
) (0.747E-4) / (0.0507) 

 

giving:   μegapped  = 150 

 

   150 =  5000 / (1 +  5000(  g /0.0507))   

 

     g  = 0.000327 meters 

     g  = 0.327 millimeters (about 13 mils) 

 

Copper Losses 

The McLyman analysis we are using limits the copper temperature rise to 25 degrees C.  

Nevertheless, we should calculate the copper wire loss for our inductor to make sure we don’t 

have a potential fire hazard.  All we have to do is determine the DC resistance for the winding 

and use: 

 

     Power  = I
2
R      

 

To determine the loss we have used the maximum current value in our calculation of 0.12 

Amperes.   



 

   Turns AWG MLT Wire length Ω/cm          R  loss 

     (cm)  (cm)  (μ – Ω/cm)    (Ohms) (W) 

   ------- ------- ------- --------  -------------- --------  ------  

Lamination core:  1341 34 5.76 7724  1687 8572  66  0.95  

 

Core losses: Because the peak to peak voltage ripple across the inductor is 200 – 50 VAC, we 

can determine the maximum B field from Faraday’s equation (equation 7-36): 

 

    Bmax = Vp /NAe2π f     

    Bmax = (150) / (1341)( (0.747E-4)2π(120)    

 

where we have used 120 Hz as the ripple frequency (full wave) 

 

    Bmax = 1.9 Tesla 

 

From the Steinmetz equation of Chapter 6:  

 

    Physteresis = kh f Bm
1.4

V          (7-44) 

 

where P is the power loss in Watts, k is the Steinmetz coefficient (Chapter 6) for the material, f 

frequency, Bm the maximum value of B field in Tesla and V the volume of the ferromagnetic 

material in cubic meters.   Silicon steel has a kh value of 170 W/m
3 
T

2 
Hz. 

 

     Physteresis = (170)(120)(1.9)
1.4

(4.14E-6)       

    Physteresis = 0.207 watts 

 

we can neglect this loss, it is much lower than the copper loss. 

 

Resonate Chokes: 

Many times high voltage converters utilize a choke that converts pulse width modulated waves 

into amplitude varying sinusoidal waves which further drive step up transformers.  At full output 

power they essentially transform a square wave into a sine wave by working in conjunction to 

any reflected capacitance from further circuitry.  Some engineers say that the choke and 

capacitor combination acts as a sharply tuned filter – only passing the first harmonic towards the 

output load.  This is not exactly correct because there is a greater voltage gain in the operation of 

the resonant than what would happen if we filtered out all of the higher order harmonics of a 

square wave.  Detailed SPICE analysis of such a topology shows that whatever the description 

maybe, a simple duty cycle to voltage height converter can be easily fabricated to use in high 



power switching converters that has several features such as high efficiency and friendly wave 

output with limited EMI spikes.      

Example 8:  Design a resonant power supply that takes 200 Vpp square waves at 40kHz and 

converts this into a high voltage output of 5,000 Vpp powering a 90 Watt resistive load.  The 

winding capacitance and stray capacitance add to 20pF as seen by the secondary.     

 

   Figure: 7.33:  Square wave to sine wave converter 

 

 

 

 

 

 

 

 

 

 

 



  

   

  Figure: 7.34: Blue: Input of resonant inductor (right axis) 

    Green:  Output of resonant inductor (right axis) 

    Red: Output of HV transformer 1:17.5 stepup (left axis)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 7-33 shows the SPICE simulation circuitry for the power drive of a 90 Watt 5,000 volt 

output high voltage power supply operating at 40kHz driven from a square wave generator of 

amplitude 100 volts peak-peak.  The step-up of the transformer is, dividing by the inductance 

ratio and taking the square root: 

 

   Step-up  = SQRT (306) = 17.5. 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

    Figure 7.35:  Gain VS frequency 

 

Notice from Figure 7.33 that a large 0.5 uF capacitor has been placed in parallel across the 

primary of the transformer in order to make the resonant frequency be 50kHz, otherwise it is 

above 450kHz if this was not inserted.     

 

    fr = (1/2π)(SQRT (LC)    (7-45) 

    fr = (1/2π)(SQRT ((20 uH)(0.506E-7)) 

    fr = 50.0 kHz.  

 

Working at 40kHz, the gain from the actual waveforms taken from Figure 7.33 is: 

 

   Gain = Vtp2 / Vs1 = 155 / 50 = 3.1 

 

It is important in these resonant circuits to always operate below the resonant frequency.   

 

The output power into the 35K Ohm resistor is actually 104 Watts since the peak to peak 

waveform across this resistor from our simulation is 5400 volts.   

 

     



A good question is: Will our transformer primary waveforms be sinusoidal?  That can be 

deduced by calculating the “resonance resistance” of the series resonant circuit:  

  

 Rres = (1/2π)(1/SQRT (L / C)       (7-46) 

 Rres = (1/2π)(1/SQRT ((20 uH) / (0.506 uF)) =  6.28 Ohms 

 

As long as our load reflected back to the primary is greater than this number we will generate 

sine waves driving the step-up transformer because we are still in an under-damped situation 

which has sinusoidal solutions.  When our reflected load of 114 Ohms, drops below 6.28 Ohms, 

that is if the actual output load drops from 35K to less than 1921 Ohms,  we head into a critically 

damped case and our waveforms will be not a true sinusoid – they will be more trapezoidal in 

form. When this happens our resonant gain of 3.1 will drop to nearly unity.    

 

Design of the 20 uH resonant inductor: 

We will use a ferrite pot-core.  The bobbins for a ferrite pot core are much easier to wind.  Let’s 

find what the Ap number would be and that we do by finding the current through the choke.  

Because the square wave come from a generator at 100 volts peak to peak, which is 50 volts 

RMS, you could think that the current would have to be 2 Amperes peak for a 100 Watt load and 

that is assuming 100% efficiency.  Unfortunately, the large capacitor we inserted raises the 

current up ten-fold.  The actual current flowing is 20 Amperes peak.    

    

Therefore:  Energy  = 1/2Li
2
 

   Energy  = (0.5)(20 uH)(20
2
) 

   Energy  = 0.004 Joules 

 

Ferrite pot core:   Ap = [461 Energy]
1.20 

 

 

Therefore the Area-Product is: AP  = 2.08 cm
4
 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 7.14 says that a 4229 pot core has an area product of 3.68 cm
4
.  We will use that one.     

 

   4229 Core: 

    Ap    3.68 cm
4
 

    Window area:   1.40 cm
2
 

    Area of core:   2.65 cm
2
  

    Magnetic path length:  6.86 cm 

    Length per turn:  8.6 cm 

    Volume:   18.2 cm
3
 

    Mass:    104 grams 

 

With that settled we need to determine the number of turns we must wind on the core.  This will 

require us to look at the current density which according to McLyman is given by the following 

equation that allows a copper wire temperature rise of 25 °C: 

 

     J = Kj Ap
y     

 

 

We must insert the core data of the core we will utilize where we use KJ from the previous chart 

listing.  Insert what corresponds to the core you have selected.  

 

Ferrite pot core (4229 core size): J = (433)(3.68)
-0.17

    = 347  Amperes/cm
2
 

 

Because we know the maximum current of 20 Amperes will flow, we can calculate the bare wire 

size needed:  

   Awire(B) = Imax / J 

 

Ferrite pot core: Awire(B) = (20A) / (347 A/cm
2
)  

 

   Awire(B) = 0.058 cm
2  

=> 11 strands  #20 AWG  

 

   Awire(B) = (11)(5.188E-3) = 0.057 cm
2
 

 

Our selection was based on the following information:  

 

Information: one strand #20 AWG bare copper cross sectional area of 5.188E-3 cm
2
. 

  one strand #20 insulated wire cross sectional area of 6.065E-3 cm
2 

  
eleven strands #20 insulated wire cross sectional area of 0.0667 cm

2 

 

Using eleven strands of wire not only makes it easier to wind but reduces the AC loss due to skin 

effect.  We are in a sense making our own Litz wire.    



Now that we know the wire size that will limit temperature rise to 25 °C (by virtue of the Kj 

parameter), we can find approximately how many turns of wire we need on the selected core.  

We need to use the insulated wire area values because that is the closest to real-world.  Using 

this data we can determine the maximum number of turns we can place on each selected core: 

 

   N = Wa S2 / Awire       

 

where S2 is a fill factor of 0.6 that takes into account the tightness of the winding.   

 

Ferrite pot core: N = (1.40)(0.6) / (0.0667) = 13 turns 11x #20AWG 

 

Rounding off to 13 turns we have the approximate number of turns that will fit and have the 

limited temperature rise, the required approximate AL value can be determined.   

 

    AL  = L / N
2
  

 

Ferrite pot core: AL  = (20 μH) /13
2
  = 118 nH / Turn

2
   

 

The Ferroxcube catalog gives AL values for the 4229 core made of 3C81 material.   

 

 
 

    Figure 7.36:  4229 Pot core AL values 

 



 
 

 Figure 7.37:  TRENDLINE of 4229 Pot core AL values and effective permeability 

 

We need an AL value of 118 nH/T
2 

so the gap has to be larger than 1320 μm.  Using logs we can 

determine its absolute value:.  Using the TRENDLINE for AL: 

 

   AL(in nH/T
2
) = 133987 x

-0.842
 

   118  = 133987 (gap in μm)
-0.842

 

   log10 (118) = log10 (133987)  -  0.842 log10 (gap in μm ) 

   2.072  = 5.127   -  0.842 log10 (gap in μm ) 

   4250 μm = gap 

 

Roughly 5/32 inch for a total gap.  Since there are no cores available from Ferroxcube that have 

their inner post ground to that amount, and we really cannot grind our own, a 5/64 shim of plastic 

such as G-10 can work for both the inner and outer gaps.  We will standardize with a 3968 μm 

gap (5/32 inches - total). This would yield an AL value of: 

 

   AL(in nH/T
2
)  = 133987 x

-0.842
 

   AL(in nH/T
2
)  = 133987 (3968)

-0.842
 

   AL   = 125  nH/T
2
 

 

 



The number of turns needed is thus: 

 

    N   = SQRT (L / AL) 

    N  = SQRT (20 μH / 125E-9) 

    N  = 12.6 turns 

 

we will round to 13 turns.  Using our gap of 5/32 inches, (3968 μm), the effective permeability is   

25.7.  So we will wind our inductor of 13 turns of 11 strands of #20 AWG insulated wire, the 

strands twisted together at 3 turns per inch.   Because we have used the data from the catalog we 

can expect that the inductance will be pretty close despite the rather large gap.  

 

Copper Losses 

The McLyman analysis we are using limits the copper temperature rise to 25 degrees C.  

Nevertheless, we should calculate the copper wire loss for our pot core input line choke just in 

case there is a problem.  The power loss is based on the  I
2
R resistive loss.  To determine the loss 

we have used the maximum current value in our calculation the RMS value of 25 peak Amperes 

which is: 17.6 Amperes since our current waveform is a sinewave.    

 

   Core Turns AWG MLT Wire length Ω/cm         R  loss 

      (cm/T)      (cm) (μ – Ω)   (Ohms) (W) 

   ------- ------- ------- ------ -------------- -------- ------------- ------ 

Ferrite pot core:  4229  13 11#20 8.6 111.8 cm 332E-6   0.0034* 1.35 

*  This is the resistance value for all 11 strands in parallel.   

 

4229 Ferrite pot core loss: 

Because we are driving our resonant inductor with a maximum voltage of 150 V having 13 turns, 

we can determine our B field using Faraday’s law as before: 

 

    Bmax = Vp /NAe2π f     

    Bmax = (150) / (13)( (2.65E-4)2π(40,000)    

 

where we have used 120 Hz as the ripple frequency (full wave) 

 

    Bmax = 0.17 Tesla 

 

 

 

 

 

 



 

Core loss Chart:   

 

 

 

 

 

    

 

 

 

 

 

 

 

 

    

 

 

   Figure 7.38:  Resonant choke core loss 3C81  

 

From Ferroxcube: 

    BACpeak  loss (from chart) volume  loss 

   -------  ---------------  --------------  --------  

3C81 core loss: 0.15 Tesla 130 mW/cm
3
  18.2 cm

3
  2.34 W 

 

Summation of losses for our ferrite resonant choke: 

 

     Copper loss  Core loss  Sum of loss 

     ------------------  -------------  --------------- 

1408   Ferrite pot core: 1.35 W   2.34 Watts  3.72 Watts 

 

For a 50°C rise in temperature a simple rule of thumb is to use the following equation: 

 

   Power50  = 2500 a b      (7-47) 

 

where a and b are two of the largest dimensions in meters.  For a 4229 pot core a = 42 mm and b 

= 29 mm.  Inserting and  converting to meters, we have: 

 

  Power50 = (2500)(0.042)(0.029) = 3.05 Watts 



 

Since out pot core dissipates more than 3.05 Watts, we would expect a temperature rise of: 

 

  Tempeature = (50)(3.72 / (3.05) = 61 °C 

 

Drop in Inductance 

How much will the inductance drop when we use this core?   

 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

      

      

             

   Figure 7.39:  Droop in μ due to B field 

 

Figure 7.37 shows that the permeability holds steady for B fields at least up to 0.2 Tesla so we 

can say that the inductance of 20 uH probably won’t change much over the range of low output 

to full output conditions.   This chart was taken from the Ferroxcube data sheet for 3C81 

material.   

   


